Electronic transitions in single and double quantum wells made of III–V compound semiconductors
PDF

Keywords

Quantum well
Double quantum well
Compound semiconductor
MBE
Heterostructure
Wavefuntion

How to Cite

Velásquez Arriaga, A., Hernández Rosas, J., Ponce, H., & López López, M. (2013). Electronic transitions in single and double quantum wells made of III–V compound semiconductors. Superficies Y Vacío, 26(4), 126-130. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/153

Abstract

In this work, we calculate the electronic inter-band transitions in low dimensional nanostructures employing the effective mass approximation. With the help of the well-known models of square quantum well (SQW) and the symmetric square double quantum well (DQW), we calculate the energy levels in nanostructures commonly grown by molecular beam epitaxy (MBE) of III–V compound semiconductors. We choose in our calculations quantum wells (QWs) made of heterostructures without strain such as GaAs/AlxGa1-xAs, as well as heterostructures where the strain is very important such as InxGa1-xAs/GaAs and InAs/GaAs. We present our results showing the electronic transition energy versus the well width in the SQW case, or versus the middle barrier width in the DQW case. A discussion about the wave functions in the SQW and its coupling in the DQW is included.
PDF

References

I. Dhifallah, M. Daoudi, A. Bardaoui, B. Eljani, A. Ouerghi, R. Chtourou, J. Lumines. 131, 1007 (2011).

A. Castañeda-Medina and R.M. Gutiérrez, Phys. Status Solidi B. 248, 2877 (2011).

A. Acus and A. Dargys, Phys. Scr. 84, 015703 (2011).

J. Hernández-Rosas, J.G. Mendoza-Álvarez, S. Gallardo- Hernández, E. Cruz-Hernández, J.S. Rojas-Ramírez, and M. López-López, Microelectron. J. 39, 1284 (2008).

W. Rudno-Rudziński, G. Sek, and J. Misiewicz, T. E. Lamas, A. A. Quivy, J. Appl. Phys. 101, 073518 (2007).

H. Morales-Cortés, C. Mejía-García, V.H. Méndez-García, D. Vázquez-Cortés, J.S. Rojas-Ramírez, R. Contreras-Guerrero, M. Ramírez-López, I. Martínez-Velis and M López-López, Nanotechnology 21, 134012 (2010).

J. G. Keizer, P. M. Koenraad, P. Smereka, J. M. Ulloa, A. Guzman, and A. Hierro Phys Rev B 85, 155326 (2012).

A. Matos-Abiague and J. Berakdar, Phys. Scr. T118, 241 (2005).

J. Brübach, A. Yu. Silov, J. E. M. Haverkort, W. v. d. Vleuten, and J. H. Wolter, Phys. Rev. B 59, 10315 (1999).

Wen-Xing Yang, Xiaoxue Yang, and Ray-Kuang Lee, Opt. Express 17, 15402 (2009)

C.M. Yee-Rendón, M. López-López, and M. Meléndez- Lira Rev. Mex. Fis. 50 193 (2004).

E. Cruz-Hernández, J. Hernández-Rosas, J.S. Rojas- Ramírez, R. Contreras-Guerrero, R. Méndez-Camacho, C. Mejía-García, V. H. Méndez-García, and M. López-López, Physica E 42, 2571 (2010)

G. Bastard: Wave mechanics applied to semiconductor heterostructures (Halsted, New York 1988).

S. Gasiorowicz, Quantum Physics (Wiley, New York 1996).

Y. P. Varshni, Physica (Utrecht) 34, 194 (1967).

F. H. Pollak, in Semiconductors and Semimetals, edited by Thomas P. Pearshall (Academic, New York, 1991), Vol. 32, p 17.

L. Pavesi, M. Guzzi, J. Appl. Phys. 75, 15 (1994).

C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).

Handbook on Physical Properties of Semiconductors Vol. 2, edited by S. Adachi (Kluwer Academic, Boston, MA, 2004).