Polycristalline growth of zinc blende gallium arsenide layers by R.F. magnetron sputtering
PDF

Keywords

Gallium arsenide
RF magnetron sputtering
Raman microscopy.

How to Cite

Bernal Correa, R., Montes Monsalve, J., Pulzara Mora, A., López López, M., Cruz Orea, A., & Cardona, J. A. (2014). Polycristalline growth of zinc blende gallium arsenide layers by R.F. magnetron sputtering. Superficies Y Vacío, 27(3), 102-106. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/144

Abstract

Zinc-blende GaAs layers were prepared on (100) Si and glass substrates by r.f. magnetron sputtering. The morphology of GaAs layers is analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (FE-SEM), to determine the sample topography and growth type. The compositional analysis was performed by means of energy dispersive X-ray spectroscopy (EDS), in order to obtain information of the atomic percentages of the elements and their spatial distribution in the samples. The optical properties of the layers are discussed from the results of UV-Vis absorption, and Photoacoustic spectroscopy (PAS). Finally, the Raman shift of the GaAs phonon modes are studied as function of the penetration depth of laser wavelength used to excite the sample on Raman microscopy.
PDF

References

. J. O. Akinlami, and A. O. Ashamu, Journal of Semiconductors 34, 32002 (2013).

. M. M R Howlader, F. Zhang and M J. Deen Nanotechnology 24, 315301 (2013).

. Erlacher, M. Ambrico, V. Capozzi, V. Augelli, H. Jaeger, and B. Ullrich, Semicond. Sci. Technol. 19, 1322 (2004).

. R.R. Campomanes , J.H. Dias da Silva , J. Vilcarromero , L.P. Cardoso, Journal of Non-Crystalline Solids 299, 788 (2002).

. M. Imaizumi, M. Adachi, Y. Fujii, Y. Hayashi, T. Soga, T. Jimbo, M. Umeno, Journal of Crystal Growth 221, 688 (2000)

. S. Kalem, B. Jusserand, Appl. Play. A 62, 237 (1996)

. A. Erlacher, B. Ullrich, E.Y. Komarova, H. Jaeger, H.J. Haugan, G.J. Brown, Journal of Non-Crystalline Solids 352, 193 (2006)

. Y. Yan-Ping, L. Chun-Ling, Q. Zhong-Liang, L. Mei, G. Xin, and B. Bao-Xue, Chin. Phys. Lett., 25, 1071 (2008).

. T. Z. A. Zulkifli, D. L. Rode, L. H. Ouyang, and B. A. Shrauner, Universiti Sains Malaysia http://csmantech.pairserver.com/Digests/2004/2004Papers/8.3.pdf.

. R.R. Campomanes, J. Ugucion, J.H. Dias da Silva, Journal of Non-Crystalline Solids 304, 259 (2002).

. P. Scherrer, Gottinger Nachrichten 394 (1918)

. P.Puech, G.Landa, Robert Carles, and C. Fontaine, J. Appl. Phys 82, 4493 (1997)

. Z. C. Feng, A. A. Allerman, P. A. Barnes, and S. Perkowitz, Appl. Phys. Lett. 60, 1848 (1992).

. B. Sulikowski, Z. Olejniczak, and V. C. Corberan, J. Phys. Chem., 100, 10323 (1996).

. H. Z. Zhang, Y. C. Kong, Y.Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hangand, S. Q. Feng, Solid State Commun., 109, 677 (1999)

. L. Binet, D. Gourier. Phys. Chem. Solids, 59, 1241 (1998)

. S C Jain, M Willander, and H Maes, Semicond. Sci. Technol. 11, 641 (1996).

. J. I. Pankov, Optical Processes in Semiconductors, Dover. 1, 34 (1971).

. J. Caetano de Souza, A. Ferreira da Silva and H. Vargas. Journal de Physique IV. Colloque C7, supplement au Journal de Physique II, Volume 4, 129 (1994).

. http://www.bruker.com/fileadmin/user_upload/8-PDFocs/ OpticalSpectrospcopy/Raman/SENTERRA/AN/AN520 _amorphous-microcrystal-silicon_EN.pdf.

. J. S. Blakemore, J. Appl Phys 53, 123 (1982).