Thin films of CdS:Cu, morphological, optical, structural and electrical properties
Full text (PDF)
LENS

Keywords

CdS film
Cu-doped CdS
Low-resistivity CdS
Cu nanoparticles.

How to Cite

S. Rodriguez, F. J., Angulo Rocha, J. N., Ramos Brito, F., Yee Rendon, C. M., García hipólito, M., Aguilar Frutis, M. A., & Castillo, S. J. (2016). Thin films of CdS:Cu, morphological, optical, structural and electrical properties. Superficies Y Vacío, 29(3), 62-69. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/80

Abstract

Thin solid films of CdS:Cu were synthesized using a wet-chemical. Doping was by thermal diffusion. Films were obtained as a function of: precursor salts, deposition time and annealing temperature. Studies of transmittance, resistivity, photoluminescence at room temperature, X-ray diffraction, high-resolution scanning and transmission electron microscopies, were performed. The CdS and CdS:Cu films obtained had an average thickness of 130 nm and 160 nm, respectively. This study provides evidence of the greater effectiveness of sodium citrate than ammonium chloride as a complexing agent. The crystalline phase of the films was cubic and did not vary with deposition time or the precursor. Studies were consistent in showing a film made up of regularly spaced, asterisk-shaped entities of about 35 nm in size, which in turn were composed of nanocrystals smaller than 10 nm. The resulting films behaved as an n-type semiconductor with an energy gap of about 2.38 eV that varied only slightly with deposition time and the precursors’ nature, but increased to 2.93 eV with Cu doping. The resistivity achieved was 5.822 × 10-5 ?-cm. The PL emission spectra showed variation in optical quality and revealed a de-excitation mechanism due to the presence of cadmium vacancies, sulfur vacancies and interstitial cadmium.
Full text (PDF)
LENS

References

. M.B. Ortuno-López, M. Sotelio-Lerma, A. Mendoza-Galván, R. Ramírez-Bon, Thin Solid Films 457, 278 (2004).

. J. Hernández-Borja, Y.V. Vorobiev, R. Ramírez-Bon, Sol. Energ. Mat. Sol C. 95, 1882 (2011).

. Y.V. Vorobiev, P.P. Horley, J. Hernández-Borja, H.E. Esparza-Ponce, R. Ramírez-Bon, P. Vorobiev, C. Pérez, J. González-Hernández, Nanoscale Res. Lett. 7, 483 (2012).

. H. Hu, L. Sheng-ChinKung, M.E. MeiYang, R.M. Nicho, Penner, Sol. Energ. Mat. Sol. C. 93, 51 (2009).

. B. Piccione, C.-H. Cho, L.K. van Vugt, R. Agarwal, Nat. Nanotechnol. 7, 640 (2012).

. M.R. Perez, I. Mejia, A.L. Salas-Villasenor, H. Stiegler, I. Trachtenberg, B.E. Gnade, M.A. Quevedo-Lopez, Org. Electron. 13, 3045 (2012).

. J. Hye Kwon, J. Seob Ahn, H. Yang, Curr. Appl. Phys. 13, 84 (2013).

. G. Arreola-Jardón, L.A. González, L.A. García-Cerda, B. Gnade, M.A. Quevedo-López, R. Ramírez-Bon, Thin Solid Films 519,517 (2010).

. T. Mendivil-Reynoso, D. Berman-Mendoza, L.A. González, S.J. Castillo, A. Apolinar-Iribe, B. Gnade, M.A. Quevedo-López, R. Ramírez-Bon, Semicond. Sci. Tech. 26, 115010 (2011).

. O. Vigil-Galán, A. Morales-Acevedo, F. Cruz-Gandarilla, M.G. Jiménez-Escamilla, J. Aguilar-Hernández, G. Contreras-Puente, J. Sastré-Hernández, E. Sánchez-Meza, M.L. Ramón-Garcia, Thin Solid Films 515, 6085 (2007).

. J. Hiie, K. Muska, V. Valdna, V. Mikli, A. Taklaja, A. Gavrilov, Sol. Energ. Mat. Sol. C. 95, 1882 (2011).

. M. Ristova, M. Ristov, Sol. Energ. Mat. Sol. C. 53, 95 (1998).

. M. Ristova, M. Ristov, P. Tosev, M. Mitreski, Thin Solid Films 315, 301 (1998).

. S. Chandramohan, T. Strache, S.N. Sarangi, R. Sathyamoorthy, T. Som, Mater. Sci. Eng. B 171, 16 (2010).

. S. Aksu, E. Bacaksiz, M. Parlak, S. Yılmaz, I. Polat, M. Altunbas, M. Turksoy, R. Topkaya, K. Özdo ̆ an, Mater. Chem. Phys. 130, 340 (2011).

. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Appl. Surf. Sci. 255, 4129 (2009).

. R. Mariappan, V. Ponnuswamy, M. Ragavendar, D. Krishnamoorthi, C. Sankar, Optik 123, 1098 (2012).

. K. Kumar-Challa, E. Magnone, E. TaeKim, Mater. Lett. 85, 135 (2012).

. Y. Kashiwaba, T. Komatsu, M. Nishikawa, Y. Ishikawa, K. Segawa, Y. Hayasi, Thin Solid Films. 408, 43 (2002).

. P.J. Sebastian, Appl. Phys. Lett. 62, 2956 (1993).

. A. Jafari, Z. Rizwan, M.S.M. Ghazali, F.U. Din, A. Zakaria, Chalcogenide Lett. 7, 641 (2010).

. H.E. Swanson, H.F. McMurdie, M. C. Morris, E. H. Evans, Standard X-ray Diffraction Powder Pattern, (National Bureau of Standards 1968).

. B.D. Cullity, Elements of X-Ray Diffracction, 1St Ed. (Addison-Wesley, Massachusetts, 1956) p. 99.

. D. Rajesh, C.S. Sunandana, M.G. Krishna, IOP Conf. Series:Mater. Sc. & Eng. 73 (2015) 012062.

. S.K. Kumar, S. Murugesan, S. Suresh, S.P. Raj, Journal of Solar Energy 2013, 6 (2013).

. Y. Kashiwaba, T. Komatsu. M. Nishikawa, Y. Ishikawa, Koji Segawa, Y. Hayasi, Thin Solid Films 408, 43 (2002).

. J. Tauc, Mater. Res. Bull. 3, 37 (1968).

. G.C. Yi, in Nanophotonics and Nanofabrications, Ed. M. Ohtsu (Wiley-VCH, Weinheim, 2009) p. 111.

. O.A. Yeshchenko, Ukr. J. Phys 58, 249 (2013).

. J. Hasanzadeh , Eur. Phys. J. Appl. Phys. 51, 30601 (2010).

. A.I. Oliva, J.E. Corona, R. Patiño, A.I. Oliva-Avilés, Bulletin Matter. Sci. 37, 247 (2014).

. C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. Alber-Aguilera, O. Vigil, L. Vaillant, J. Appl. Phys. 86, 3171 (1999).

. R. Lozada-Morales, O. Zelaya-Ángel, G. Torres-Delgado, Appl. Surf. Sci. 175-176, 562 (2001).

. Yu.S. Bezdetko, V.G. Klyuev, Proc. NAP 3, 01PCSI03 (2014).

. K.S. Rathore, D.D. Patidar, N.S. Saxena, K.B. Sharma, J. Ovonic Res. 5, 175 (2009).

. R.H. Bube in, Photoconductivity of solids, (John Wiley 1960).

. I.J Ferrer, P. Salvador,J. Appl. Phys. 66, 2568 (1989).

. J. Aguilar-Hernández, J. Sastré-Hernández, R. Mendoza-Pérez, M. Cárdenas-García, G. Contreras-Puente, Phys. Stat. Sol. (c) 2, 3710 (2005).

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Array