Epitaxial growth of an AlxGa1-xAs/GaAs/AlxGa1-xAs quantum well using metalorganic vapours and solid arsenic as precursors
PDF (Español (España))

Keywords

MOCVD
Elemental arsenic
Quantum well. MOCVD
Arsénico elemental
Pozo cuántico.

How to Cite

Castillo Ojeda, R., Galván Arellano, M., & Díaz Reyes, J. (2013). Epitaxial growth of an AlxGa1-xAs/GaAs/AlxGa1-xAs quantum well using metalorganic vapours and solid arsenic as precursors. Superficies Y Vacío, 26(4), 120-125. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/152

Abstract

In this work is discussed the use of a deposition system of semiconductor epitaxial layers of the MOCVD type (Metal Organic Chemical Vapour Deposition), different of the conventional ones that use arsine as arsenic precursor. In the growth system has replaced the arsine by elemental arsenic, which is more easily manageable without the hazards presented by the handling of high pressure cylinders of arsine. As a result of the substitution of the arsine by solid arsenic, the incorporation kinetic of the species on the growth surface is severely modified, of such way, that the impurities incorporation of such as carbon and oxygen is increased, deteriorating of this way the physical properties of the grown materials. In this work we make a study on the effects of the use of arsenic like precursor, at the same time as we presented the results obtained during the elaboration of a quantum structure by means of this nonconventional system. In order to evaluate the optical characteristics of the samples, it was measured low temperature photoluminescence, the existence of the quantum well is supported by depth profile measurements by secondary ion mass spectroscopy (SIMS), and finally atomic force microscopy (AFM) images are presented to evaluate the surface roughness.
PDF (Español (España))

References

R. Peña Sierra, J. G. Castro-Zavala and A. Escobosa. J. Crystal Growth 107, 337 (1991).

R. Peña-Sierra, A. Escobosa and V. M. Sánchez R. Appl. Phys. Lett. 62, 2359 (1993).

J. Díaz-Reyes, M. Galván-Arellano, R. S. Castillo-Ojeda, R. Peña-Sierra. Vacuum 84, 1182 (2010).

R. Castillo Ojeda, S. Manrique Moreno, M. Galván Arellano and R. Peña Sierra. Revista Mexicana de Física 53, 441 (2007) -446.

J. Díaz-Reyes, M. Galván-Arellano, R. Castillo–Ojeda, R. Peña Sierra y A. Escobosa-Chavarria. Superficies y Vacío 16, 1 (2003).

H. Kawai, K. Kaneko and Watanabe. J. Appl. Phys. 56, 463 (1984).

A. Galdikas. Vacuum 55, 51 (1999).

A. Torrisi, A. Scandurra, A. Licciardello. Appl. Surf. Sci. 81, 259 (1994).

J. Menéndez, A. Pinczuk, J. Bevk, J. P. Mannaerts. J. Vac. Sci. Technol. B 6, 1306 (1988).

T. C. McGlinn, T. N. Krabach, M. V. Klein, G. Bajor, J. E. Greene, B. Kramer, S.A. Barnett, A. Lastras, S. Gorbatkin. Phys. Rev. B 33, 8396 (1986).

R. Loudon. Adv. Phys. 13, 423 (1964).

D. Olego, M. Cardona. Phys. Rev. B 24, 7217 (1981).

F. Frost, G. Lippold, A. Schindler, F. Bigl. J. Appl. Phys. 85, 8378 (1999).

Z. R. Wasilewski, M. N. Dion, D. J. Lockwood, P. Poole, R. W. Streater, A. J. Spring Thorpe. J. Appl. Phys. 81, 1683 (1997).

G. Wicks, W. I. Wang, C. E. C. Wood, L. F. Eastman, and L. Rathbun. J. Appl. Phys. 52, 5792 (1981).