ZnO thin film as non-enzymatic glucose sensor in an alkaline solution
PDF (English)
LENS (English)

Palabras clave

thickness
ZnO
film
glucose
non-enzymatic sensor

Cómo citar

Villasana-Ponce, G., Chalé-Lara, F., Olarte Villamizar, G., Valaguez Velazquez, E., Cruz-González, N., Marquez Herrera, A., & Zapata-Torres, M. (2019). ZnO thin film as non-enzymatic glucose sensor in an alkaline solution. Superficies Y Vacío, 32, 22-26. https://doi.org/10.47566/2019_syv32_1-010022

Resumen

In this work, ZnO films were deposited on titanium substrates by the sputtering technique for non-enzymatic glucose detection in an alkaline solution. The samples were grown using pulsed D.C. sputtering using a ZnO target; we remain constant the power at 100 W and varied the deposition time in order of obtain films with different thickness.  The properties of the samples were analyzed by X-ray diffraction (XRD), optical transmission, scanning electron microscopy (SEM), and electrochemical techniques. The results shown that the thickness of the samples varied with the deposition time. The electrochemical response studied by cyclic voltammetry revealed that the sensor response increased when the ZnO film thickness decreased. The electrochemical biosensing device showed a sensitivity of 7.65 ?A cm-2mM-1 with a linear response range of 3.3 mM to 11.0 mM.

https://doi.org/10.47566/2019_syv32_1-010022
PDF (English)
LENS (English)

Citas

. B. Mecheri, A. D’Epifanio, A. Geracitano, P. Targon Campana, S. Licoccia, J. Appl. Electrochem. 43, 181 (2013).

https://doi.org/10.1007/s10800-012-0489-y

. J. Gun, M.J. Schöning, M.H. Abouzar, A. Poghossian, E. Katzd, Electroanal. 20, 1748 (2008).

https://doi.org/10.1002/elan.200804255

. R.K. Shervedani, M. Karevan, A. Amini, Sens. Actuat. B-Chem. 204, 783 (2014).

http://dx.doi.org/10.1016/j.snb.2014.08.033

. Global Status Report on noncommunicable diseases, 1st Edition (World Health Organization, Geneva, 2014).

https://www.who.int/nmh/publications/ncd-status-report-2014/en/

. N.H. Cho (Ed.), IDF Diabetes Atlas, 8th edition (International Diabetes Federation, Brussels, 2017).

https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/134-idf-diabetes-atlas-8th-edition.html

. K. Dhara, D.R. Mahapatra, Microchim. Acta 185, 1 (2018).

https://doi.org/10.1007/s00604-017-2609-1

. V. Gupta, Thin Solid Films 519, 1141 (2010).

http://dx.doi.org/10.1016/j.tsf.2010.08.058

. X. Wang, C.Y. Ge, K. Chen, Y.X. Zhang, Electrochim. Acta 259, 225 (2018).

https://doi.org/10.1016/j.electacta.2017.10.182

. Z. Li, Y. Zhang, J. Ye, M. Guo, J. Chen, W. Chen, J. Nanotechnol. 2016, 9454830 (2016).

http://dx.doi.org/10.1155/2016/9454830

. S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, Talanta 86, 157 (2011).

http://dx.doi.org/10.1016/j.talanta.2011.08.051

. J. Du, Y. Tao, Z. Xiong, X. Yu, A. Xie, S. Luo, X. Li, C. Yao, Nano 14, 1 (2019).

https://doi.org/10.1142/S1793292019500930

. A. Raziq, M. Tariq, R. Hussain, M.H. Mahmood, I. Ullah, J. Khan, M. Mohammad, J. Serbian Chem. Soc. 83, 733 (2018).

https://doi.org/10.2298/JSC170927025R

. Z. Liang, X. Zhang, J. Mater. Sci. 53, 7138 (2018).

https://doi.org/10.1007/s10853-018-2106-x

. K. Grochowska, J. Ryl, J. Karczewski, G. Śliwiński, A. Cenian, K. Siuzdak, J. Electroanal. Chem. 837, 230 (2019).

https://doi.org/10.1016/j.jelechem.2019.02.040

. Y. Wang, J. Chen, C. Zhou, L. Zhou, Y. Kong, H. Long, S. Zhong, Electrochim. Acta 115, 269 (2014).

http://dx.doi.org/10.1016/j.electacta.2013.09.173

. C. Dong, Y. Tao, Q. Chang, Q. Liu, H. Guan, G. Chen, Y. Wang, J. Alloys Compd. 762, 216 (2018).

https://doi.org/10.1016/j.jallcom.2018.05.193

. S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Anal. Chim. Acta 737, 1 (2012).

http://dx.doi.org/10.1016/j.aca.2012.05.048

. A. Tarlani, M. Fallah, B. Lotfi, A. Khazraei, S. Golsanamlou, J. Muzart, M. Mirza-Aghayan, Biosens. Bioelectron. 67, 601 (2015).

http://dx.doi.org/10.1016/j.bios.2014.09.063

. S.A. Zaidi, J.H. Shin, Talanta 149, 30 (2016).

http://dx.doi.org/10.1016/j.talanta.2015.11.033

. T. Li, F. Jia, Y. Fan, Z. Ding, J. Yang, Biosens. Bioelectron. 42, 5 (2013).

http://dx.doi.org/10.1016/j.bios.2012.10.003

. E.A. Martín-Tovar, L.G. Daza, A.J.R. López-Arreguín, A. Iribarren, R. Castro-Rodriguez, T. Nonferr. Metal. Soc. 27, 2055 (2017).

https://doi.org/10.1016/S1003-6326(17)60230-9

. V. Şenay, S. Pat, Ş. Korkmaz, T. Aydoğmuş, S. Elmas, S Özen, N. Ekem, M. Zafer, Appl. Surf. Sci. 318, 2 (2014).

http://dx.doi.org/10.1016/j.apsusc.2013.10.044

. S. Saha, V. Gupta, J. Appl. Phys. 110, 064904 (2011).

https://doi.org/10.1063/1.3633212

. S. Saha, M. Tomar, V. Gupta, Enzyme Microb. Technol. 79-80, 63 (2015).

http://dx.doi.org/10.1016/j.enzmictec.2015.07.008

. S.J. Ikhmayies, N.M. Abu El-Haija, R.N. Ahmad-Bitar, J. Semicond. 36, 033005 (2015).

http://dx.doi.org/10.1088/1674-4926/36/3/033005

. G.N. Dar, A. Umar, S.A. Zaidi, S. Baskoutas, S.H. Kim, M. Abaker, A. Al-Hajry, S.A. Al-Sayari, Sci. Adv. Mater. 3, 901, (2011).

https://doi.org/10.1166/sam.2011.1242

. C.M. Fung, J.S. Lloyd, S. Samavat, D. Deganello, K.S. Teng, Sens. Actuat. B-Chem. 247, 807 (2017).

http://dx.doi.org/10.1016/j.snb.2017.03.105

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2019 Array