Resumen
Nowadays, starch is an excellent biodegradable option instead of synthetic polymers, to avoid contamination. In this work, triticale starch from three varieties (Faraón, Peteroa and Aguacero) was isolated and the physico-chemical and thermo-rheological properties were evaluated. Also, mechanical properties of thermoplastic films using this starch were assessed. From the physico-chemical analysis it was found that the moisture, protein and lipids contents were slightly different among starches. Amylose value was similar. Thermo-rheological behavior measured by Mixolab® revealed that initial water uptake was higher for Faraón variety due to the grain morphology observed by Scanning Electron Microscopy (SEM). Values for gelatinization temperature obtained were 82.2 °C for Faraón starch, followed by Peteroa (72.0 °C) and finally Aguacero (65.6 °C). From the mechanical properties, Faraón thermoplastic starch (TPS) films showed the highest value of Young’s modulus (1.90 ± 1.09 MPa) for the composition 50/25/25 (starch/glycerol/water). The highest elongation at break (64.77 ± 14.14 %) was obtained for Peteroa composition 50/35/15 (starch/glycerol/water). Then, triticale mainly used to feed animals more than for human consumption, could be good alternative for preparing biodegradable films with potential applications in agriculture and food packaging.
Citas
. M. González-Petit, Z. Correa, M.A. Sabino, J. Polym. Environ. 23, 11 (2015).
http://dx.doi.org/10.1007/s10924-014-0655-x
. L. Amagliani, J. O’Regan, A. Kelly, J. O’Mahony, J. Cereal Sci. 70, 291(2016).
https://doi.org/10.1016/j.jcs.2016.06.014
. M. Mellado, I. Matus, R. Madariaga, Boletín INIA 183, 1 (2008).
http://biblioteca.inia.cl/medios/biblioteca/boletines/NR35865.pdf
. A. Aguirre, R. Borneo, A. León, LWT-Food Sci. Technol. 44, 1853 (2011).
https://doi.org/10.1016/j.lwt.2010.11.011
. Z. Correa-Pacheco, A. Cruz-Orea, J. Jiménez-Pérez, S. Solorzano-Ojeda, C. Tramón-Pregnan, Int. J. Thermophys. 36, 873 (2015).
https://doi.org/10.1007/s10765-014-1771-5
. M. Schmiele, M. Ferrari, M. Pedrosa, Y. Kil, LWT-Food Sci. Technol. 76, 259 (2017).
https://doi.org/10.1016/j.lwt.2016.07.014
. C. Rosell, E. Santos, C. Collar, Eur. Food Res. Technol. 231, 535 (2010).
https://doi.org/10.1007/s00217-010-1310-y
. I. Švec, M. Hrušková, LWT-Food Sci. Technol. 60, 623 (2015).
https://doi.org/10.1016/j.lwt.2014.07.034
. M. Fabra, M. Martínez-Sanz, L. Gómez-Mascaraque, R. Gavara, A. López-Rubio, Carbohyd. Polym. 186, 184 (2018).
https://doi.org/10.1016/j.carbpol.2018.01.039
. S. Malmir, B. Montero, M. Rico, L. Barral, R. Bouza, Y. Farrag, Carbohyd. Polym. 194, 357 (2018).
https://doi.org/10.1016/j.carbpol.2018.04.056
. J. Colivet, R. Calvalho, Ind. Crop Prod. 95, 599 (2017).
https://doi.org/10.1016/j.indcrop.2016.11.018
. M. Ansorena, F. Zubeldía, M. Marcovich, LWT-Food Sci. Technol. 69, 47 (2016).
https://doi.org/10.1016/j.lwt.2016.01.020
. Y. García-Tejada, C. López-González, J. Pérez-Orozco, R. Rendón-Villalobos, A. Jiménez-Pérez, E. Flores-Huicochea, J. Solorza-Feria, C. Andrea Bastida, LWT-Food Sci. Technol. 54, 447 (2013).
https://doi.org/10.1016/j.lwt.2013.05.041
. J. Prakash Maran, V. Sivakumar, R. Sridhar, V. Prince Inmanuel, Ind. Crop Prod. 42, 159 (2013).
https://doi.org/10.1016/j.indcrop.2012.05.011
. A. Nawab, F. Alam, M. Haq, Z. Lufti, A. Hasnain, Int. J. Biol. Macromol. 98, 869 (2017).
https://doi.org/10.1016/j.ijbiomac.2017.02.054
. B. Murray, D. Gross, T. Fox, T., Starch Manufacturing: A Profile. Final Report. Research Triangle Institute, North Carolina (1994).
https://www3.epa.gov/ttnecas1/regdata/IPs/Starch%20Manufacturing_IP.pdf
. S. Badui, Hidratos de Carbono in “Química de los alimentos”, Alhambra Mexicana, Mexico, 1, 43-122 (1990).
ISBN: 970-26-0670-5
. C. Henríquez, B. Escobar, F. Figuerola, I. Chiffelle, H. Speisky, A. Estévez, Food Chem. 107, 592 (2008).
https://doi.org/10.1016/j.foodchem.2007.08.040
. AOAC 2057, AOAC 7.062 and AOAC 996.11. 1990. Association of Official Analytical Chemists (AOAC), Official Methods of the Association Official Analytical Chemists.
. A. Frás, K. Go??biewska, D. Go??biewski, D. Ma?kowski, D. Boros, P. Szecówka, J. Cereal Sci. 71, 66 (2016).
https://doi.org/10.1016/j.jcs.2016.06.016
. A. Rakha, P. Åman, R. Andersson, J. Cereal Sci. 54, 324 (2011).
https://doi.org/10.1016/j.jcs.2011.06.010
. A. Dennet, P. Schofield, J. Roake, N. Howes, J. Chin, J. Cereal Sci. 49, 393 (2009).
https://doi.org/10.1016/j.jcs.2009.01.005
. R. Moreira, F. Chenlo, S. Arufe, S. Rubinos, J. Food Sci. Technol. 52, 7954 (2015).
https://doi.org/10.1007/s13197-015-1953-6
. G. Rokey, Troubleshooting in “Advances in Food Extrusion Technology”, M. Maskan and A. Altan (Eds.), (CRC Press, USA, 2016) pp. 355-382.
https://www.crcpress.com/Advances-in-Food-Extrusion-Technology/Maskan-Altan/p/book/9781138199125
. M. Sanyang, S. Sapuan, M. Jawaid, Mo. Ishak, J. Sahari, Polymers 7, 1106 (2015).
https://doi.org/10.3390/polym7061106
. E. Basiak, A. Lenart, F. Debeaufort, Polymers 10, 1 (2018).
https://doi.org/10.3390/polym10040412
. P. Ramsamy, Ionics 18, 413 (2012).
https://doi.org/10.1007/s11581-011-0636-1
. Z. Ping, Q. Nguyen, S. Chen, J. Zhou, Y. Ding, Polymer 42, 8461 (2001).
https://doi.org/10.1016/S0032-3861(01)00358-5
. O. Odusanya, D. Manan, U. Ishiaku, B. Azemi, J. Appl. Polym. Sci. 87, 877 (2003).
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2019 Array