Improved method to reduce interfacial defects in bonding polydimethylsiloxane layers of microfluidic devices for lab–on–chip applications

Authors

  • Salvador Mendoza-Acevedo Centro de Investigación en Computación-Instituto Politécnico Nacional http://orcid.org/0000-0002-6989-0406
  • Luis Alfonso Villa-Vargas Centro de Investigación en Computación-Instituto Politécnico Nacional
  • Héctor Francisco Mendoza-León Centro de Nanociencias y Micro y Nano Tecnologías-Instituto Politécnico Nacional
  • Miguel Ángel Alemán-Arce Centro de Nanociencias y Micro y Nano Tecnologías-Instituto Politécnico Nacional
  • Jacobo Esteban Munguía-Cervantes Centro de Nanociencias y Micro y Nano Tecnologías-Instituto Politécnico Nacional

DOI:

https://doi.org/10.47566/2017_syv30_1-020025

Keywords:

bonding, polydimethylsiloxane, membranes, plasma, soft lithography

Abstract

This work describes a method to achieve a nearly seamless bonding between two polydimethylsiloxane (PDMS) surfaces. This material is widely used to realize microfluidic systems, and obtaining a strong union is an important step in the fabrication process. From the proposed bonding method, a minimal interface is accomplished, useful for hermetic seals in microfluidic systems. The presented method relies in the surface activation by oxygen plasma and the interaction of said treated surface with uncured PDMS. A comparison of bonding methods is presented in this paper in order to assess the performance of the bonding process and verify the interface formed between the bonded surfaces. The intended application of the presented method is the fabrication of pressure sensors, micropumps, microchannels, microfluidic pumps, valves, mixers and other structures that demand a complete seal over the bonded surfaces.

Author Biography

  • Salvador Mendoza-Acevedo, Centro de Investigación en Computación-Instituto Politécnico Nacional
    Research Professor Laboratorio de Microtecnología y Sistemas Embebidos (MicroSE) Departamento de Investigación en Ingeniería de Cómputo

References

. S.K. Sia, G.M. Whitesides, Electrophoresis. 24, 3563 (2003).

http://dx.doi.org/10.1002/elps.200305584

. K.-H. Yea, S. Lee, J. Choo, C.-H. Oh, S. Lee, Chem Comm. 14, 1509 (2006).

http://dx.doi.org/10.1039/B516253J

. A. Mata, A. Fleischman, S. Roy, Biomed. Microdevices. 7, 281 (2005).

http://dx.doi.org/10.1007/s10544-005-6070-2

. J. Ni, B. Li, J. Yang, Microelectron Eng. 99, 28 (2012).

http://dx.doi.org/10.1016/j.mee.2012.04.002

. C. Probst, A. Grünberger, W. Wiechert, D. Kohlheyer, Micromachines 4, 357 (2013).

http://dx.doi.org/10.3390/mi4040357

. L. Xu, S. R. Gutbrod, A. P. Bonifas, Y. Su, M. S. Sulkin, N. Lu, H. J. Chung, K. I. Jang, Z. Liu, M. Ying, C. Lu, R. C. Webb, J. S. Kim, J. I. Laughner, H. Cheng, Y. Liu, A. Ameen, J. W. Jeong, G. T. Kim, Y. Huang, I. R. Efimov, J. A. Rogers, Nat. Commun. 5, 3329 (2014).

http://dx.doi.org/10.1038/ncomms4329

. A. Banaeiyan, D. Ahmadpour, C. Adiels, M. Goksör, Micromachines 4, 414 (2013).

http://dx.doi.org/10.3390/mi4040414

. J. Friend, L. Yeo, Biomicrofluidics. 4, 026502 (2010).

http://dx.doi.org/10.1063/1.3259624

. M. Wiklund, A. Christakou, M. Ohlin, I. Iranmanesh, T. Frisk, B. Vanherberghen, B. Önfelt, Micromachines 5, 27 (2014).

http://dx.doi.org/10.3390/mi5010027

. T. Jianhua, A. S. Craig, S. Yu, J. Micromech. Microeng. 18, 037004 (2008).

https://dx.doi.org/10.1088/0960-1317/18/3/037004

. L.-J. Yang, T.-Y. Lin, Microelectron Eng. 88, 1894 (2011).

http://dx.doi.org/10.1016/j.mee.2011.02.067

. B. Balakrisnan, S. Patil, E. Smela, J. Micromech. Microeng. 19, 047002 (2009).

https://dx.doi.org/10.1088/0960-1317/19/4/047002

. D. C. Duffy, J. C. McDonald, O. J. Schueller, G. M. Whitesides, Analytical chemistry. 70, 4974 (1998).

http://dx.doi.org/10.1021/ac980656z

. M. A. Eddings, M. A. Johnson, B. K. Gale, J. Micromech. Microeng. 18, 067001 (2008).

https://dx.doi.org/10.1088/0960-1317/18/6/067001

. B. Samel, M. K. Chowdhury, G. Stemme, J. Micromech. Microeng. 17(8), 1710 (2007).

https://dx.doi.org/10.1088/0960-1317/17/8/038

. S. Satyanarayana, R. N. Karnik, A. Majumdar, J. Microelectromech. S. 14, 392 (2005).

http://dx.doi.org/10.1109/JMEMS.2004.839334

. D. Huh, G. A. Hamilton, D. E. Ingber, Trends Cell Biol. 21, 745 (2011).

http://dx.doi.org/10.1016/j.tcb.2011.09.005

. L. Xinchuan, Z. Yihao, M. W. Nomani, W. Xuejun, H. Tain-Yen, K. Goutam, J. Micromech. Microeng. 23, 025022 (2013).

https://dx.doi.org/10.1088/0960-1317/23/2/025022

Downloads

Published

2017-06-15

Issue

Section

Research Papers

How to Cite

Improved method to reduce interfacial defects in bonding polydimethylsiloxane layers of microfluidic devices for lab–on–chip applications. (2017). Superficies Y Vacío, 30(2), 25-29. https://doi.org/10.47566/2017_syv30_1-020025