Recubrimiento de ZrO2 estabilizada con CaO para disminuir la corrosión en sustratos de acero y aluminio
PDF
LENS

Palabras clave

Zirconium oxide
nanoparticle synthesis
Sol-Gel method
coating
anticorrosion properties Óxido de zirconio
síntesis de nanopartículas
método sol-gel
recubrimiento
propiedades anticorrosivas

Cómo citar

Villarreal, I., Aldás, M., Guerrero-Barragan, V. H., Rosas-Laverde, N. M., & Debut, A. (2017). Recubrimiento de ZrO2 estabilizada con CaO para disminuir la corrosión en sustratos de acero y aluminio. Superficies Y Vacío, 30(2), 14-20. https://doi.org/10.47566/2017_syv30_1-020014

Resumen

En este trabajo se estudiaron las propiedades anticorrosivas de recubrimientos nanoestructurados que contienen zirconia estabilizada con calcia (CaO), aplicados sobre sustratos de acero inoxidable 304 y aluminio comercial mediante dip-coating y spin-coating. Para la síntesis del óxido cerámico se utilizó oxicloruro de zirconio octahidratado como precursor y acetato de calcio monohidratado como estabilizador de la estructura cúbica de la zirconia, en una relación molar precursor/estabilizante de 0.84/0.16. Las películas de gel aplicadas se sometieron a 550 ºC durante 10 min para los sustratos de acero y 600 ºC por 5 min para los de aluminio y se evaluó la adherencia de los recubrimientos cerámicos resultantes. Se obtuvieron recubrimientos continuos que alcanzaron espesores promedio de 2 y 3 mm en los sustratos de acero y de 1.5 y 1.6 mm en los sustratos de aluminio, dependiendo el método de aplicación del recubrimiento. La resistencia a la corrosión de los recubrimientos con la mejor adherencia fue evaluada durante 500 h en una cámara salina, según la norma ASTM B117-11. Todas las combinaciones sustrato-recubrimiento mostraron una muy buena resistencia a la corrosión. Los recubrimientos aplicados por dip-coating presentaron mejor resistencia a la corrosión que los aplicados por spin-coating en los dos tipos de sustrato. La protección anticorrosiva de los recubrimientos fue mejor en los sustratos de aluminio en comparación con la de los sustratos de acero.
https://doi.org/10.47566/2017_syv30_1-020014
PDF
LENS

Citas

. A. Popoola, O.E. Olorunniwo, O.O. Ige, in Developments in Corrosion Protection, Ed. M. Aliofkhazraei (InTech, Rijeka, Croatia, 2014) pp. 241-270.

http://dx.doi.org/10.5772/57420

. F. Perdomo, L. A. Avaca, M. A. Aegerter, P. De Lima-Neto, J. Mater. Sci. Lett. 17, 295 (1998).

http://dx.doi.org/10.1023/A:1006529621763

. D. Wang, G. P. Bierwagen, Prog. Org. Coat. 64, 327 (2009).

http://dx.doi.org/10.1016/j.porgcoat.2008.08.010

. B. Babiarczuk, A. Szczurek, A. Donesz, I. Rutkowska, J. Krzak, Surf. Coat. Technol. 285, 134 (2016).

http://dx.doi.org/10.1016/j.surfcoat.2015.11.030

. A.S. Hamdy, D.P. Butt, J. Mater. Process. Tech. 181, 76 (2007).

http://dx.doi.org/10.1016/j.jmatprotec.2006.03.042

. Y. Jung, H.G. Kim, J.Y. Park, D.J. Park, J.H. Park, J. Asian Ceram. Soc. 3, 217 (2015).

http://dx.doi.org/10.1016/j.jascer.2015.03.002

. I. Villarreal, N.M. Rosas, V.H. Guerrero, Revista Politécnica 38, 7 (2017).

http://www.revistapolitecnica.epn.edu.ec/images/revista/volumen38/tomo2/527SintesisdeNanoparticulasdeOxidodeZirconio.pdf

. G. Cubillos, J. Olaya, M. Bethencourt, G. Cifredo, G. Blanco, J. Therm. Spray Techn. 22, 1242 (2013).

http://dx.doi.org/10.1007/s11666-013-9956-1

. M. Sahnesarayi, M. Sarpoolaky, S. Rastegari, Surf. Coat. Technol. 258, 861 (2014).

http://dx.doi.org/10.1016/j.surfcoat.2014.07.071

. S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, J. Fu, Nanoscale Res. Lett. 7, 227 (2012).

http://dx.doi.org/10.1186/1556-276X-7-227

. G. Carbajal-De la Torre, M.A. Espinosa-Medina, J.J. Pacheco-Ibarra, L.A. Ibarra-Bracamontes, S.R. Galván, M.I. Cabrera, Superficies y Vacío 24, 121 (2011).

http://smcsyv.fis.cinvestav.mx/supyvac/24_4/SV24412111.pdf

. S. Rezaee, G. Rashed, M. Golozar, Int. J. Corros. 2013, 1 (2013).

http://dx.doi.org/10.1155/2013/453835

. R. Smith, X. Zhou, W. Huebner, H. Anderson, J. Mater. Res. 19, 2708 (2004).

http://dx.doi.org/10.1557/JMR.2004.0352

. J. Dong, M. Hu, E. Payzant, T. Armstrong, P. Becher, J. Nanosc. Nanotechnol. 9, 161 (2002).

http://dx.doi.org /10.1166/jnn.2002.082

. I. Cubillos, J. Olaya, M. Bethencourt, G. Cifredo, J. Marco, Rev. Latinoam. Metal. Mater. 33, 116 (2013).

http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0255-69522013000100013

. Powder Diffraction Files v2.01, JCPDS (International Center for Diffraction Data, Pennsylvania, 2000).

. P. Duran, Bol. Soc. Esp. Ceram. V. 38, 403 (1999).

http://boletines.secv.es/upload/20090515121459.199938403.pdf

. C.R. Arroyo, A. Debut, A.V. Vaca, C. Stael, K. Guzman, B. Kumar, L. Cumbal, Biol. Med. 8, 1 (2016).

http://dx.doi.org/10.4172/0974-8369.1000281

. C. Yañez,. Master’s Thesis “Síntesis y caracterización de películas delgadas del sistema ZrO2:8%Y2O3 mediante la técnica sol-gel”, (Instituto Politécnico Nacional, México, 2008).

http://tesis.ipn.mx/bitstream/handle/123456789/3882/SINTESISCARACPELICULAS.pdf?sequence=1

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Array