Si3N4 Young’s modulus measurement from microcantilever beams using a calibrated stylus profiler
PDF (English)
LENS (English)

Cómo citar

Munguia Cevantes, J. E., Méndez Méndez, J. V., Mendoza León, H. F., Alemán Arce, M. Ángel, Mendoza Acevedo, S., & Estrada Vázquez, H. (2017). Si3N4 Young’s modulus measurement from microcantilever beams using a calibrated stylus profiler. Superficies Y Vacío, 30(1), 10-13. https://doi.org/10.47566/2017_syv30_1-010010

Resumen

Stylus surface profiler has been widely used in order to measure Young’s modulus of silicon nitride (Si3N4) from microcantilever beams. Until now, several Si3N4 Young’s modulus values have been reported. It may be due to incomplete assessment of the microcantilever beams bending over its entire length or a lack of calibration of the stylus force system used in those works. We presented in this work an alternative method to measure the elastic modulus of MEMS thin layers in a rather accurate manner. A stylus force calibration is reported from a calibrated silicon microcantilever beam in order to measure the Si3N4 Young’s modulus. We reported Si3N4 Young´s modulus from three microcantilever beams, with values of 219.4 ± 0.6 GPa, 230.1 ± 3.4 GPa and 222 ± 11 GPa for 50 µm, 100 µm and 200 µm wide respectively, which are in good agreement with respect to the Si3N4 Young´s modulus which have been determined by other methods.
https://doi.org/10.47566/2017_syv30_1-010010
PDF (English)
LENS (English)

Citas

. W.N. Sharpe, Handbook of Experimental Solid Mechanics, 3rd Ed. (Springer, 2010) p.203-225.

ISBN: 978-0-387-26883-5

http://www.springer.com/us/book/9780387268835

. W.N. Sharpe Jr., B. Yuan, R.L. Edwards, J. Microelectromech. S. 6, 193 (1997).

http://dx.doi.org/10.1109/84.623107

. L. Kiesewetter, J.-M. Zhang, D. Houdeau, A. Steck- Enborn, Sensor. Actuat. A.Phys. 35, 153 (1992).

http://dx.doi.org/10.1016/0924-4247(92)80154-U

. T.P. Weihs, S. Hong, J.C. Bravman, W.D. Nix, J. Mater. Res. 3, 931 (1988).

http://dx.doi.org/10. 557/JMR.1988.0931

. B.D. Jensen, M.P. de Boer, N.D. Masters, F. Bitsie, D.A. La Van, J. Microelectromech. S. 10, 336 (2001).

http://dx.doi.org/10.1109/84.946779

. M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, J. Brugger, Fatigue Fract. Eng. M. 28, 735 (2005).

http://dx.doi.org/10.1111/j.1460-2695.2005.00873.x

. M. Qin, V.M.C. Poon, J. Mater. Sci. Lett. 19, 2243 (2000).

http://dx.doi.org/10.1023/A:1006729009092

. Y-C. Tai, R.S. Muller, Proceedings of IEEE Micro electro mechanical systems (New York, 1190) pp. 147-152.

http://dx.doi.org/ 10.1109/MEMSYS.1990.110267

. M.W. Denhoff, J. Micromech. Microeng. 13, 686 (2003).

http://dx.doi.org/10.1088/0960-1317/13/5/321

. G.J. McShane, M. Boutchich, A. Srikantha Phani, D.F. Moore, J. Micromech. Microeng. 16, 1926 (2006).

http://dx.doi.org/10.1088/0960-1317/16/10/003

. J.L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

http://dx.doi.org/10.1063/1.1143970

. J,M, Gere, B.J. Goodno, Mechanics of Materials, 8th ed. (CENGAGE, 2013) p. 486-509.

ISBN-13: 978-1-111-13603-1

https://cengage.com.au/product/title/mechanics-of-materials-brief-si-edition/isbn/9781111136031

. J.J. Wortman and R. A. Evans, J. Appl. Phys., 36, 153 (1965).

http://dx.doi.org/10.1063/1.1713863

. M.A. Hopcroft, W. D. Nix, T. W. Kenny, J. Microelectromech. S. 19, 229 (2010).

http://dx.doi.org/10.1109/JMEMS.2009.2039697

. E. Peiner, L. Doering, Sensor. Actuat. A.Phys. 123-124, 137 (2005).

http://dx.doi.org/10.1016/j.sna.2005.02.031

. G. Dai, L. Jung, L. Koenders and R. Krüger-Sehm, J. Phys.: Conf. Ser. 13, 236 (2005).

http://dx.doi.org/10.1088/1742-6596/13/1/055

. W-H. Chuang, T. Luger, R.K. Fetting, R. Ghodssi, J. Microelectromech. S. 13, 870 (2004).

http://dx.doi.org/10.1109/JMEMS.2004.836815

. A. Khan, J. Philip, P. Hess, J. Appl. Phys. 95, 1667 (2004).

http://dx.doi.org/10.1063/1.1638886

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Array