Resumen
Metallic zinc nanostructures have been grown by the thermal evaporation and condensation technique using a mixture of zinc and manganese oxide powders and nitrogen as carrier gas. 650 °C and 1 atm were used as processing temperature and pressure, respectively. It was found that the shape of zinc structures is dependent on the source materials. When a mixture of Zn/MnO2 powders is used as raw material micro-particles with oblate spherical shape and micro-columns are obtained. On the other hand, when only zinc powder is used as source material, spherical stones without facets are deposited. It is assumed that evaporation from the source is inhibited when a mixture of Zn and MnO2 is used. Therefore, supersaturation downstream from the source changes and as a consequence the morphology of the structures is modified. Synthesized material is make-up of zinc atoms and no other impurities or catalytic particles were detected according to elemental analysis. Vapor–solid is though as mechanism for growing those zinc structures.Citas
. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Márquez, Y. Xia, Chem. Soc. Rev. 35, 1084 (2006).
. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Švorčík, Nanoscale Res. Lett. 6, 96 (2011).
. B. Wiley, Y. Sun, Y. Xia, Acc. Chem. Res. 40, 1067 (2007).
. N. Chekurov, K. Grigoras, A. Peltonen, S. Franssila and I. Tittonen, Nanotechnology 20, 065307 (2009).
. C. Y. Nam, D. Tham, J. E. Fisher, Appl. Phys. Lett. 85, (23) 5676 (2004).
. M. Ichikawa, IEEE Journal of Quantum Electronics 38, (8) 988 (2002).
. Z. L. Wang, Zinc Oxide Bulk Thin Films and Nanostructures, Chapter 10 Ed. C. Jagadish and S. Pearton, Elsevier.
. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
. D. N. Castillo, T. Díaz, E. Rosendo, H. Juárez, G. García., Materials Research Society 1371, 33 (2012).
. J. M. Sieben, M. M. E. Duarte, International Journal of Hydrogen Energy 36, (5) 3313 (2011).
. X. Zhang, G. Wang, W. Zhang, N. Hu, H. Wu, B. Fang, J. Phys. Chem. C 112, 8856 (2008). A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nature Materials 4, 366 (2005).
. E. Deiss, F. Holzer, O. Hass, Electrochim. Acta, 47, 3995 (2002).
. Y. Ito, M. Nice, R. Plivelich, J. Power Sources 196, 2340 (2011).
. J. P. Hermans, C. M. Thrush, D. T. Morelli, M. C. Wu, Phys. Rev. Lett. 91, 076804 (2003).
. J. G. Wang, M. L. Tian, N. Kumar, T. E. Mallouk, Nano Lett. 5, 1247 (2005).
. X. Y. Zang, J. Y. Dai, C. H. Lan, H. T. Wang, P. A. Webley, Q. Li, H. C. Ong, Acta Materialia, 55, 15939 (2007).
. C. F. Guo, Y. Wang, P. Jiang, S. Cao, J. Miao, Z. Zhang and Q. Lin, Nanotechnology 19, 445710 (2008).
. J. Li, X. Chen, Solid State Commun. 131, 769 (2004).
. J. Gong, S. Yang, H. Huang, X. Zhao, Z. Z. Yu, Nanotechnology 18, 235606 (2007).
. J. Liu, Z. Zhang, X. Su, Y. Zhao, J. Phys. D: Appl. Phys. 38, 1068 (2005).
. F. Ramos-Brito, C. Alejo-Armenta, M. García-Hipólito, E. Camarillo, J. Hernández, C. Fálcony, H. Murrieta, Journal of Luminescence 131, 874 (2011).
. Y. Zhang, F. Zhu, J. Zhang, L. Xia, Nanoscale Res. Lett .3, 201 (2008).
. J. I. Shulin, Y. E. Changhui, J. Mater. Sci. Technol. 24, (4) 457 (2008).
. Khan, W. M. Jadwisienczak, M. E. Kordesch, Phys. E. 33, 331 (2006).
. W. S. Khan, C. Cao, Z. Usman, S. Hussain, G. Nabi, F. K. Butt, Z. Ali, T. Mahmood, N. A. Niaz, Mat. Res. Bulletin 46, 2261 (2011).
. Y. J. Chen, B Chi, H. Z. Zhang, H. Chen, Y. Chen, Materials Letters 61, 144 (2007).
. F. K. Shan, B. I. Kim, G. X. Liu, J. Y. Sohn, W. J. Lee, B. C Shin, Y. S. Yu, J. Appl. Phys. 95, (9) 4772 (2004).
. H.-W. Zhang, E.-W. Shi, Z.-Z. Chen, X.-C. Liu, B. Xiao, J. Appl. Phys. 45, (10A) 7688 (2006).
. X. Zhang, Y. Zhang, Z. L. Wang, W. Mai, Y. Gu, W. Chu, Z. Wu, Appl. Phys. Lett. 92, 162102 (2008).
. J. Zhang, F. Jiang, S. Ding, Appl. Phys. A 109, 255 (2012).
. L. W. Yang, X. L. Wu, G. S. Huang, T. Qiuand, M. Yang, J. Appl. Phys. 97, 014308 (2005).
. P. X. Gao, C. S. Lao, Y. Ding, Z. L. Wang, Adv. Funct. Mater. 16, 53 (2006).