Growth of polyhedral stacked micro columns and micro particles of zinc by thermal evaporation and condensation technique

Authors

  • B. L. Rivera Flores CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • T. Díaz Becerril CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • C. Bueno Avendaño CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • R. Galeazzi Isasmendi CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • E. Rosendo Andrés CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • G. García Salgado CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • H. Juárez Santiesteban CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • M. Pacio Castillo CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • C. Morales Ruiz CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla
  • R. Silva González Instituto de Física, Benemérita Universidad Autónoma de Puebla

Keywords:

Zinc microstructures, Evaporation-Condensation Technique, Hexagonal Zinc

Abstract

Metallic zinc nanostructures have been grown by the thermal evaporation and condensation technique using a mixture of zinc and manganese oxide powders and nitrogen as carrier gas. 650 °C and 1 atm were used as processing temperature and pressure, respectively. It was found that the shape of zinc structures is dependent on the source materials. When a mixture of Zn/MnO2 powders is used as raw material micro-particles with oblate spherical shape and micro-columns are obtained. On the other hand, when only zinc powder is used as source material, spherical stones without facets are deposited. It is assumed that evaporation from the source is inhibited when a mixture of Zn and MnO2 is used. Therefore, supersaturation downstream from the source changes and as a consequence the morphology of the structures is modified. Synthesized material is make-up of zinc atoms and no other impurities or catalytic particles were detected according to elemental analysis. Vapor–solid is though as mechanism for growing those zinc structures.

References

. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Márquez, Y. Xia, Chem. Soc. Rev. 35, 1084 (2006).

. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Švorčík, Nanoscale Res. Lett. 6, 96 (2011).

. B. Wiley, Y. Sun, Y. Xia, Acc. Chem. Res. 40, 1067 (2007).

. N. Chekurov, K. Grigoras, A. Peltonen, S. Franssila and I. Tittonen, Nanotechnology 20, 065307 (2009).

. C. Y. Nam, D. Tham, J. E. Fisher, Appl. Phys. Lett. 85, (23) 5676 (2004).

. M. Ichikawa, IEEE Journal of Quantum Electronics 38, (8) 988 (2002).

. Z. L. Wang, Zinc Oxide Bulk Thin Films and Nanostructures, Chapter 10 Ed. C. Jagadish and S. Pearton, Elsevier.

. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

. D. N. Castillo, T. Díaz, E. Rosendo, H. Juárez, G. García., Materials Research Society 1371, 33 (2012).

. J. M. Sieben, M. M. E. Duarte, International Journal of Hydrogen Energy 36, (5) 3313 (2011).

. X. Zhang, G. Wang, W. Zhang, N. Hu, H. Wu, B. Fang, J. Phys. Chem. C 112, 8856 (2008). A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nature Materials 4, 366 (2005).

. E. Deiss, F. Holzer, O. Hass, Electrochim. Acta, 47, 3995 (2002).

. Y. Ito, M. Nice, R. Plivelich, J. Power Sources 196, 2340 (2011).

. J. P. Hermans, C. M. Thrush, D. T. Morelli, M. C. Wu, Phys. Rev. Lett. 91, 076804 (2003).

. J. G. Wang, M. L. Tian, N. Kumar, T. E. Mallouk, Nano Lett. 5, 1247 (2005).

. X. Y. Zang, J. Y. Dai, C. H. Lan, H. T. Wang, P. A. Webley, Q. Li, H. C. Ong, Acta Materialia, 55, 15939 (2007).

. C. F. Guo, Y. Wang, P. Jiang, S. Cao, J. Miao, Z. Zhang and Q. Lin, Nanotechnology 19, 445710 (2008).

. J. Li, X. Chen, Solid State Commun. 131, 769 (2004).

. J. Gong, S. Yang, H. Huang, X. Zhao, Z. Z. Yu, Nanotechnology 18, 235606 (2007).

. J. Liu, Z. Zhang, X. Su, Y. Zhao, J. Phys. D: Appl. Phys. 38, 1068 (2005).

. F. Ramos-Brito, C. Alejo-Armenta, M. García-Hipólito, E. Camarillo, J. Hernández, C. Fálcony, H. Murrieta, Journal of Luminescence 131, 874 (2011).

. Y. Zhang, F. Zhu, J. Zhang, L. Xia, Nanoscale Res. Lett .3, 201 (2008).

. J. I. Shulin, Y. E. Changhui, J. Mater. Sci. Technol. 24, (4) 457 (2008).

. Khan, W. M. Jadwisienczak, M. E. Kordesch, Phys. E. 33, 331 (2006).

. W. S. Khan, C. Cao, Z. Usman, S. Hussain, G. Nabi, F. K. Butt, Z. Ali, T. Mahmood, N. A. Niaz, Mat. Res. Bulletin 46, 2261 (2011).

. Y. J. Chen, B Chi, H. Z. Zhang, H. Chen, Y. Chen, Materials Letters 61, 144 (2007).

. F. K. Shan, B. I. Kim, G. X. Liu, J. Y. Sohn, W. J. Lee, B. C Shin, Y. S. Yu, J. Appl. Phys. 95, (9) 4772 (2004).

. H.-W. Zhang, E.-W. Shi, Z.-Z. Chen, X.-C. Liu, B. Xiao, J. Appl. Phys. 45, (10A) 7688 (2006).

. X. Zhang, Y. Zhang, Z. L. Wang, W. Mai, Y. Gu, W. Chu, Z. Wu, Appl. Phys. Lett. 92, 162102 (2008).

. J. Zhang, F. Jiang, S. Ding, Appl. Phys. A 109, 255 (2012).

. L. W. Yang, X. L. Wu, G. S. Huang, T. Qiuand, M. Yang, J. Appl. Phys. 97, 014308 (2005).

. P. X. Gao, C. S. Lao, Y. Ding, Z. L. Wang, Adv. Funct. Mater. 16, 53 (2006).

Downloads

Published

2014-09-15

How to Cite

Rivera Flores, B. L., Díaz Becerril, T., Bueno Avendaño, C., Galeazzi Isasmendi, R., Rosendo Andrés, E., García Salgado, G., Juárez Santiesteban, H., Pacio Castillo, M., Morales Ruiz, C., & Silva González, R. (2014). Growth of polyhedral stacked micro columns and micro particles of zinc by thermal evaporation and condensation technique. Superficies Y Vacío, 27(3), 82–87. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/140

Issue

Section

Research Papers