The role of Zn-complexing agents in the chemical bath deposition of ZnO and ZnS thin films
Species distribution diagrams calculated at 90 °C for (a) Zn-ETA, (b) Zn-TEA, and (c) Zn-Cit systems.
PDF

Keywords

Thermodynamic analysis
Equilibrium chemical
ZnS
Thin films deposition
Complexing agents Análisis termodinámico
Equilibrio químico
ZnS
Depósito de películas delgadas
Agentes acomplejantes

How to Cite

Vargas Rueda, J. A., Alonso, A. R., & Melendez-Lira, M. (2022). The role of Zn-complexing agents in the chemical bath deposition of ZnO and ZnS thin films. Superficies Y Vacío, 35, 221202. https://doi.org/10.47566/2022_syv35_1-221202

Abstract

In order to control the deposition of Zn-related films by chemical bath deposition, the effects of Zn-complexing agent are analyzed. ZnS films were produced by chemical bath deposition technique employing sodium citrate, ethanolamine and Triethanolamine as complexing agents. The deposition conditions for ZnS (ZnO) thin films were obtained through a thermodynamic analysis, using distribution diagrams for molar fraction of Zn complexes. From species distribution diagrams of Zn-ethanolamine, Zn-Triethanolamine and Zn-citrate. It was found that for pH values between 4 and 6 the highest Zn fraction is obtained. The results highlight the importance of complexing agent morphology, while the use of ethanolamine and triethanolamine produce ZnO films due to their high reactivity; the use of sodium citrate produce ZnS films. Deposited ZnS films have a cubic structure, n-type conductivity, resistivity of 8.36×104 ??cm with a 3.75 eV bandgap.

https://doi.org/10.47566/2022_syv35_1-221202
PDF

References

.[1]. S. Chen, R. Yu, L. Song, R. Zhang, X. Cao, B. Wang, P. Zhang, Appl. Surf. Sci. 498, 143876 (2019).

https://doi.org/10.1016/j.apsusc.2019.143876

.[2]. P.A. Ajibade, A.E. Oluwalana, B.M. Sikakane, M. Singh, Chem. Phys. Lett. 755, 137813 (2020).

https://doi.org/10.1016/j.cplett.2020.137813

.[3]. D. Agrawal, S.L. Patel, Himanshu, S. Chander, M.S. Dhaka, Opt. Mater. 105, 109899 (2020).

https://doi.org/10.1016/j.optmat.2020.109899

.[4]. B. Deng, Y. Zhu, J. Li, X. Chen, K. He, J. Yang, K. Qin, Z. Bi, X. Xia, S. Chen, X. Xu, G. Xu, J. Alloys Compd. 845, 155400 (2020).

https://doi.org/10.1016/j.jallcom.2020.155400

.[5]. S.N. Sadikin, M.Y.A. Rahman, A.A. Umar, Optik 211, 164644 (2020).

https://doi.org/10.1016/j.ijleo.2020.164644

.[6]. Y. Ye, L. Wang, K. Liu, J. Li, Microchem. J. 155, 104749 (2020).

https://doi.org/10.1016/j.microc.2020.104749

.[7]. F. Zhang, H. Wang, X. Zhou, Y. Zhao, J. Duan, Opt. Laser Technol. 127, 106145 (2020).

https://doi.org/10.1016/j.optlastec.2020.106145

.[8]. J.M. Jacob, R. Rajan, T.C. Tom, V.S. Kumar, G.G. Kurup, R. Shanmuganathan, A. Pugazhendhi, Ceram. Int. 45, 24193 (2019).

https://doi.org/10.1016/j.ceramint.2019.08.128

.[9]. H. Qin, T. Hu, Y. Zhai, N. Lu, J. Aliyeva, J. Hazar. Mater. 400, 123161 (2020).

https://doi.org/10.1016/j.jhazmat.2020.123161

.[10]. O. Toma, L. Ion, S. Iftimie, V.A. Antohe, A. Radu, A.M. Raduta, D. Manica, S. Antohe, Appl. Surf. Sci. 478, 831 (2019).

https://doi.org/10.1016/j.apsusc.2019.02.032

.[11]. K. Benyahia, A. Benhaya, M.S. Aida, J. Semicond. 36, 103001 (2015).

https://doi.org/10.1088/0031-8949/2013/T157/014043

.[12]. K. Yang, B. Li, G. Zeng, Superlattices Microstruct. 130, 409 (2019).

https://doi.org/10.1016/j.spmi.2019.05.009

.[13]. K. Ghezali, L. Mentar, B. Boudine, A. Azizi, J. Electroanal. Chem. 794, 212 (2017).

http://dx.doi.org/10.1016/j.jelechem.2017.04.030

.[14]. D. Chiu, Y. He, Z. Gao, C. Remple, C.-H. Chang, ECS J. Solid State Sci. Technol. 7, P615 (2018).

https://doi.org/10.1149/2.0031811jss

.[15]. Y. Zhu, Y. Zhang, L. Yan, D. Zhang, J. Zhou, S. Adimi, S. Ruan, J. Alloys Compd. 832, 155022 (2020).

https://doi.org/10.1016/j.jallcom.2020.155022

.[16]. M. Sathishkumara, M. Saroja, M. Venkatachalam, Optik 182, 774 (2019).

https://doi.org/10.1016/j.ijleo.2019.02.014

.[17]. N. Kumar, L.P. Purohit, Y.C. Goswami, Physica E 83, 333 (2016).

http://dx.doi.org/10.1016/j.physe.2016.04.025

.[18]. G. Arandhara, J. Bora, P.K. Saikia, Mater. Chem. Phys. 241, 122277 (2020).

https://doi.org/10.1016/j.matchemphys.2019.122277

.[19]. R.P. Khatri, A.J. Patel, IJRASET 6, 1705 (2018).

https://doi.org/10.22214/ijraset.2018.3263

.[20]. C. Ekberg, P.L. Brown. Hydrolysis of Metal Ions (Wiley-VCH Verlag GmbH & Co, 2016).

https://doi.org/10.1002/9783527656189

.[21]. Z-Y Ding, Q-Y Chen, Z-L Yin, K. Liu, Trans. Nonferrous Met. Soc. China 23, 832 (2013).

https://doi.org/10.1016/S1003-6326(13)62536-4

.[22]. L.A. Kochergina, A.V. Volkov, D.V. Krutov, O.N. Krutova, Russ. J. Phys. Chem. A 80, 899 (2006).

https://doi.org/10.1134/S0036024406060100

.[23]. H. Kazimierczak, P. Ozga, R.P. Socha, Electrochim. Acta 104, 378 (2013).

http://dx.doi.org/10.1016/j.electacta.2012.12.140

.[24]. A. Goux, T. Pauporté, J. Chivot, D. Lincot, Electrochim. Acta 50, 2239 (2005).

https://doi.org/10.1016/j.electacta.2004.10.007

.[25]. G. Hodes, Chemical solution deposition of semiconductor films (Marcel Dekker Inc, 2002).

https://doi.org/10.1201/9780203909096

.[26]. I.J. González-Panzo, P.E. Martín-Várguez, A.I. Oliva, J. Electrochem. Soc. 161, D181 (2014).

https://doi.org/10.1149/2.067404jes

.[27]. T.V. Vinogradova, V.F. Markov, L.N. Maskaeva, Russ. J. Gen. Chem. 80, 2341 (2010).

https://doi.org/10.1134/S1070363210110198

.[28]. S.J. Ashcroft, J. Chem. Eng. Data 33, 73 (1988).

https://doi.org/10.1021/je00052a001

.[29]. A. Nasar, M. Shamsuddin, Thermochim. Acta 205, 157 (1992).

https://doi.org/10.1016/0040-6031(92)85257-V

.[30]. G. Eriksson, Anal. Chim. Acta 112, 375 (1979).

https://doi.org/10.1016/S0003-2670(01)85035-2

.[31]. D.W. Ball, Physical Chemistry, 2nd Ed. (Cengage Learning, 2014).

https://www.cengagebrain.com.mx/shop/isbn/9781133958437

.[32]. I.J. González-Chan, A.I. Oliva, J. Electrochem. Soc. 163, D421 (2016).

https://doi.org/10.1149/2.0911608jes

.[33]. A. Karimi, B. Sohrabi, M.R. Vaezi, Thin Solid Films 651, 97 (2018).

https://doi.org/10.1016/j.tsf.2018.02.021

.[34]. A. Wei, J. Liu, M. Zhuang, Y. Zhao, Mater. Sci. Semicond. Process. 16, 1478 (2013).

http://dx.doi.org/10.1016/j.mssp.2013.03.016

.[35]. N. Prasad, B. Karthikeyan, Nanotechnology 30, 485702 (2019).

https://doi.org/10.1088/1361-6528/ab3cbf

.[36]. S-J Young, C-C Yang, L-T Lai, J. Electrochem. Soc. 164, B3013 (2017).

https://doi.org/10.1149/2.0051705jes

.[37]. J Theerthagiri, S. Salla, R.A. Senthil, P Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H-S Kim, Nanotechnology 30, 392001 (2019).

https://doi.org/10.1088/1361-6528/ab268a

.[38]. Z. Mao, C. Fu, X. Pan, X. Chen, H. He, W. Wang, Y. Zeng, Z. Ye, Phys. Lett. A 384, 126148 (2020).

https://doi.org/10.1016/j.physleta.2019.126148

.[39]. D. Himmel, L.C. Maurin, O. Gros, J-L Mansot, Biol. Cell 101, 43 (2009).

https://doi.org/10.1042/BC20080051

.[40]. Z. Li, M. Chen, Q. Zhang, J. Qu, Z. Ai, Y. Li, Appl. Clay Sci. 144, 115 (2017).

http://dx.doi.org/10.1016/j.clay.2017.05.015

.[41]. C.M. Samba Vall, M. Chaik, H. Ait Dads, H. El Aakib, M. Elyaagoubi, M. Aggour, A. Outzourhit, J. Semicond. 39, 123001 (2018).

https://doi.org/10.1088/1674-4926/39/12/123001

.[42]. F. Zakerian, H. Kafashan, Superlattices Microstruct. 124, 92 (2018).

https://doi.org/10.1016/j.spmi.2018.09.039

.[43]. A.E. Igweoko, C. Augustine, N.E. Idenyi, B.A. Okorie, F.N.C. Anyaegbunam, Mater. Res. Express 5, 036413 (2018).

https://doi.org/10.1088/2053-1591/aab652

.[44]. W. Zhang, X. Zeng, J. Lu, H. Chen, Mater. Res. Bull. 48, 3843 (2013).

http://dx.doi.org/10.1016/j.materresbull.2013.05.084

.[45]. A. Goktas, F. Aslan, E. Yasar, I.H. Mutlu, J. Mater. Sci.: Mater. Electron. 23, 1361 (2012).

http://dx.doi.org/10.1007/s10854-011-0599-z

.[46]. S. Gallanti, E. Chassaing, D. Lincot, N. Naghav, Electrochim. Acta 178, 225 (2015).

http://dx.doi.org/10.1016/j.electacta.2015.07.135

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Array