Influence of active layer thickness, device architecture and degradation effects on the contact resistance in organic thin film transistors
PDF
LENS

Keywords

Thin Film Transistors
Polymers
Contact resistance

How to Cite

Pons Flores, C. A., Mejía, I., Quevedo-Lopez, M., Alvarado Beltran, C., & Reséndiz, L. M. (2017). Influence of active layer thickness, device architecture and degradation effects on the contact resistance in organic thin film transistors. Superficies Y Vacío, 30(3), 46-50. https://doi.org/10.47566/2017_syv30_1-030046

Abstract

We analyze the influence of three combined effects on the contact resistance in organic- based thin film transistors: a) the active layer thickness, b) device architecture and c) semiconductor degradation. Transfer characteristics and parasitic series resistance were analyzed in devices with three different active layer thicknesses (50, 100 and 150 nm) using top contact (TC) and bottom contact (BC) thin film transistor (TFT) configurations. In both configurations, the lowest contact resistance (2.49 × 106 ?) and the highest field-effect mobility (4.8 × 10-2 cm2/V·s) was presented in devices with the thicker pentacene film. Top contact thin film transistors presented field-effect mobility values one order of magnitude higher (4.8 × 10-2 cm2/V·s) than bottom contact ones (1 × 10-3 cm2/V·s). Threshold voltage for top-contact thin film transistors was -3.1 V. After 2 months, performance in the devices degraded and presented an increase of one order of magnitude   (105 - 106 ?) for BC-TFTs and two orders of magnitude (106 - 108 ?) for TC-TFTs in contact resistance.

https://doi.org/10.47566/2017_syv30_1-030046
PDF
LENS

References

. D. Gupta, M. Katiyar, D. Gupta, Org. Electron. 10, 775 (2009).

https://doi.org/10.1016/j.orgel.2009.03.012

. D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, M.S. Shur, J. Appl. Phys. 100, 024509 (2006).

http://dx.doi.org/10.1063/1.2215132

. S. Lee, S.J. Kang, G. Jo, M. Choe, W. Park, J. Yoon, T. Kwon, Y.H. Kahng, D.Y. Kim, B.H. Lee, T. Lee, Appl. Phys. Lett. 99, 083306 (2011).

http://dx.doi.org/10.1063/1.3629994

. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C.D. Sheraw, J.A. Nichols, T.N. Jackson, Solid-State Electron. 47, 297 (2003).

https://doi.org/10.1016/S0038-1101(02)00210-1

. J. Park, J.M. Kang, D.W. Kim, J.S. Choi, Thin Solid Films 518, 6232 (2010).

https://doi.org/10.1016/j.tsf.2010.03.168

. Y.J. Lin and B.C. Huang, Microelectron. Eng. 103, 76 (2013).

https://doi.org/10.1016/j.mee.2012.09.001

. F. Li, A. Nathan, Y. Wu and B. S. Ong, Organic Thin Film Transistor Integration: A Hybrid Approach, (Wiley, Weinheim Germany, 2011).

ISBN: 978-3-527-40959-4 http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527409599.html

. G.B. Blanchet, C.R. Fincher, M. Lefenfeld, Appl. Phys. Lett. 84, 296 (2004).

http://dx.doi.org/10.1063/1.1639937

. S. Gowrisanker, Y. Ai, M.A. Quevedo-Lopez, H. Jia, H.N. Alshareef, E. Vogel, B. Gnade, Appl. Phys. Lett. 92, 153305 (2008).

http://dx.doi.org/10.1063/1.2904968

. V.H. Martinez-Landeros, G. Gutierrez-Heredia, F.S. Aguirre-Tostado, M. Sotelo-Lerma, B.E. Gnade, M.A. Quevedo-Lopez, Thin Solid Films 531, 398 (2013).

https://doi.org/10.1016/j.tsf.2012.12.061

. Ch. Pannemann, T. Diekmann, U. Hilleringmann, J. Mat. Res. 19, 1999 (2004).

https://doi.org/10.1557/JMR.2004.0267

. D. Simeone, M. Rapisarda, G. Fortunato, A. Valletta, L. Mariucci, Org. Electron. 12, 447 (2011).

https://doi.org/10.1016/j.orgel.2010.12.013

. C.R. Kagan, A. Afzali, T. O. Graham, Appl. Phys. Lett. 86, 193505 (2005).

http://dx.doi.org/10.1063/1.1924890

. Y. Hu, G. Dong, Y. Liang, L. Wang, Y. Qiu, Jpn. J. Appl. Phys. 44, L938 (2005).

http://iopscience.iop.org/1347-4065/44/7L/L938

. L. Mariucci, D. Simeone, S. Cipolloni, L. Maiolo, A. Pecora, G. Fortunato, S. Brotherton, Solid-State Electron. 52, 412 (2008).

https://doi.org/10.1016/j.sse.2007.10.010

. B. Kumar, B.K. Kumar, Y.S. Negi, IET Circuits Devices Syst., 8, 131 (2014).

http://dx.doi.org/10.1049/iet-cds.2013.0275

. K.N.N. Unni, S. Dabo-Seignon, J.M. Nunzi, J. Mater. Sci. 41, 1865 (2006).

https://doi.org/10.1007/s10853-006-7549-9

. K. Tsukagoshi, I.Yagi, K.Shigeto, K.Yanagisawa, J.Tanabe, Y.Aoyagi, Appl. Phys. Lett. 87, 183502 (2005).

http://dx.doi.org/10.1063/1.2120894

. Y.W. Wang, D.Z. Liu, M.Y. Hong, H.L. Cheng, Proc. of SPIE 7417, 74171F (2009).

https://doi.org/10.1117/12.826072

. M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Miura-Mattausch, M. Hirose, IEEE Trans. Electron. Devices 46, 1429 (1999).

https://doi.org/10.1109/16.772487

. D. Boudinet, G.L. Blevennec, C. Serbutoviez, J.M. Verilhac, H. Yan, G. Horowitz, J. Appl. Phys. 105, 084510 (2009).

http://dx.doi.org/10.1063/1.3110021

. W.T. Wondmagegn, N.T. Satyala, R.J. Pieper, M.A. Quevedo-Lopez, S. Gowrisanker, H.N. Alshareef, H.J. Stiegler, B.E. Gnade, J Comput. Electron. 10, 144 (2011).

https://doi.org/10.1007/s10825-010-0311-1

. N. Koch, A. Kahn, J. Ghijsen, J.J. Pireaux, J. Schwartz, R.L. Johnson, A. Elschner, Appl. Phys. Lett. 82, 70 (2003).

http://dx.doi.org/10.1063/1.1532102

. R.T. Tung, Phys. Rev. B, 64, 205310 (2001).

https://doi.org/10.1103/PhysRevB.64.205310

. P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson, Solid-State Electron. 47, 259 (2003).

https://doi.org/10.1016/S0038-1101(02)00204-6

. H.L. Cheng, Y.S. Mai, W.Y. Chou, L.R. Chang, X.W. Liang, Adv. Funct. Mater. 17, 3639 (2007).

https://doi.org/10.1002/adfm.200700207

. R. Matsubara, N. Ohashi, M. Sakai, K. Kudo, M. Nkamura, Appl. Phys. Lett. 92, 242108 (2008).

http://dx.doi.org/10.1063/1.2943659

. B. Bräuer, R. Kukreja, A. Virkar, H.B. Akkerman, A. Fognini, T. Tyliszczac, Z. Bao, Organic Electron. 12, 1936 (2011).

https://doi.org/10.1016/j.orgel.2011.08.007

. E.J. Meijer, G.H. Gelinck, E. van Veenendaal, B.H. Huisman, D.M. de Leeuw, T.M. Klapwijk, Appl. Phys. Lett. 82, 4576 (2003).

http://dx.doi.org/10.1063/1.1581389

. T. Ahn, H.J. Suk, J. Won, M.H. Yi, Microelectron. Eng. 86, 41 (2009).

https://doi.org/10.1016/j.mee.2008.09.007

. J. Li, H.P. Lin, F. Zhou, W.Q. Zhu, X.Y. Jiang, Z.L. Zhang, Curr. Appl. Phys. 12, 280 (2012).

https://doi.org/10.1016/j.cap.2011.06.020

. J.E. Northrup, M.L. Chabinyc, Phys. Rev. B 68, 041202(R) (2003).

https://doi.org/10.1103/PhysRevB.68.041202

. C.D. Dimitrakopoulos, D.J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).

https://doi.org/10.1147/rd.451.0011

. D.J. Gundlach, T.N. Jackson, D.G. Schlom, S.F. Nelson, Appl. Phys. Lett. 74, 3302 (1999).

http://dx.doi.org/10.1063/1.123325

. Z.T. Zhu, J.T. Mason, R. Dieckmann, G.G. Malliaras, Appl. Phys. Lett. 81, 24 (2002).

http://dx.doi.org/10.1063/1.1527233

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Array