Influence of active layer thickness, device architecture and degradation effects on the contact resistance in organic thin film transistors

Authors

  • Cesar Adrian Pons Flores Departamento de Ingeniería Eléctrica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional.
  • Israel Mejía Department of Materials Science and Engineering, University of Texas at Dallas
  • Manuel Quevedo-Lopez Department of Materials Science and Engineering, University of Texas at Dallas
  • Clemente Alvarado Beltran Universidad Autónoma de Sinaloa
  • Luis Martín Reséndiz Sección de Estudios de Posgrado e Investigación, UPIITA, Instituto Politécnico Nacional.

DOI:

https://doi.org/10.47566/2017_syv30_1-030046

Keywords:

Thin Film Transistors, Polymers, Contact resistance

Abstract

We analyze the influence of three combined effects on the contact resistance in organic- based thin film transistors: a) the active layer thickness, b) device architecture and c) semiconductor degradation. Transfer characteristics and parasitic series resistance were analyzed in devices with three different active layer thicknesses (50, 100 and 150 nm) using top contact (TC) and bottom contact (BC) thin film transistor (TFT) configurations. In both configurations, the lowest contact resistance (2.49 × 106 ?) and the highest field-effect mobility (4.8 × 10-2 cm2/V·s) was presented in devices with the thicker pentacene film. Top contact thin film transistors presented field-effect mobility values one order of magnitude higher (4.8 × 10-2 cm2/V·s) than bottom contact ones (1 × 10-3 cm2/V·s). Threshold voltage for top-contact thin film transistors was -3.1 V. After 2 months, performance in the devices degraded and presented an increase of one order of magnitude   (105 - 106 ?) for BC-TFTs and two orders of magnitude (106 - 108 ?) for TC-TFTs in contact resistance.

Author Biography

  • Luis Martín Reséndiz, Sección de Estudios de Posgrado e Investigación, UPIITA, Instituto Politécnico Nacional.
    Profesor Titutlar Seccion de Estudios de Posgrado e Investigacion

References

. D. Gupta, M. Katiyar, D. Gupta, Org. Electron. 10, 775 (2009).

https://doi.org/10.1016/j.orgel.2009.03.012

. D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, M.S. Shur, J. Appl. Phys. 100, 024509 (2006).

http://dx.doi.org/10.1063/1.2215132

. S. Lee, S.J. Kang, G. Jo, M. Choe, W. Park, J. Yoon, T. Kwon, Y.H. Kahng, D.Y. Kim, B.H. Lee, T. Lee, Appl. Phys. Lett. 99, 083306 (2011).

http://dx.doi.org/10.1063/1.3629994

. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C.D. Sheraw, J.A. Nichols, T.N. Jackson, Solid-State Electron. 47, 297 (2003).

https://doi.org/10.1016/S0038-1101(02)00210-1

. J. Park, J.M. Kang, D.W. Kim, J.S. Choi, Thin Solid Films 518, 6232 (2010).

https://doi.org/10.1016/j.tsf.2010.03.168

. Y.J. Lin and B.C. Huang, Microelectron. Eng. 103, 76 (2013).

https://doi.org/10.1016/j.mee.2012.09.001

. F. Li, A. Nathan, Y. Wu and B. S. Ong, Organic Thin Film Transistor Integration: A Hybrid Approach, (Wiley, Weinheim Germany, 2011).

ISBN: 978-3-527-40959-4 http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527409599.html

. G.B. Blanchet, C.R. Fincher, M. Lefenfeld, Appl. Phys. Lett. 84, 296 (2004).

http://dx.doi.org/10.1063/1.1639937

. S. Gowrisanker, Y. Ai, M.A. Quevedo-Lopez, H. Jia, H.N. Alshareef, E. Vogel, B. Gnade, Appl. Phys. Lett. 92, 153305 (2008).

http://dx.doi.org/10.1063/1.2904968

. V.H. Martinez-Landeros, G. Gutierrez-Heredia, F.S. Aguirre-Tostado, M. Sotelo-Lerma, B.E. Gnade, M.A. Quevedo-Lopez, Thin Solid Films 531, 398 (2013).

https://doi.org/10.1016/j.tsf.2012.12.061

. Ch. Pannemann, T. Diekmann, U. Hilleringmann, J. Mat. Res. 19, 1999 (2004).

https://doi.org/10.1557/JMR.2004.0267

. D. Simeone, M. Rapisarda, G. Fortunato, A. Valletta, L. Mariucci, Org. Electron. 12, 447 (2011).

https://doi.org/10.1016/j.orgel.2010.12.013

. C.R. Kagan, A. Afzali, T. O. Graham, Appl. Phys. Lett. 86, 193505 (2005).

http://dx.doi.org/10.1063/1.1924890

. Y. Hu, G. Dong, Y. Liang, L. Wang, Y. Qiu, Jpn. J. Appl. Phys. 44, L938 (2005).

http://iopscience.iop.org/1347-4065/44/7L/L938

. L. Mariucci, D. Simeone, S. Cipolloni, L. Maiolo, A. Pecora, G. Fortunato, S. Brotherton, Solid-State Electron. 52, 412 (2008).

https://doi.org/10.1016/j.sse.2007.10.010

. B. Kumar, B.K. Kumar, Y.S. Negi, IET Circuits Devices Syst., 8, 131 (2014).

http://dx.doi.org/10.1049/iet-cds.2013.0275

. K.N.N. Unni, S. Dabo-Seignon, J.M. Nunzi, J. Mater. Sci. 41, 1865 (2006).

https://doi.org/10.1007/s10853-006-7549-9

. K. Tsukagoshi, I.Yagi, K.Shigeto, K.Yanagisawa, J.Tanabe, Y.Aoyagi, Appl. Phys. Lett. 87, 183502 (2005).

http://dx.doi.org/10.1063/1.2120894

. Y.W. Wang, D.Z. Liu, M.Y. Hong, H.L. Cheng, Proc. of SPIE 7417, 74171F (2009).

https://doi.org/10.1117/12.826072

. M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Miura-Mattausch, M. Hirose, IEEE Trans. Electron. Devices 46, 1429 (1999).

https://doi.org/10.1109/16.772487

. D. Boudinet, G.L. Blevennec, C. Serbutoviez, J.M. Verilhac, H. Yan, G. Horowitz, J. Appl. Phys. 105, 084510 (2009).

http://dx.doi.org/10.1063/1.3110021

. W.T. Wondmagegn, N.T. Satyala, R.J. Pieper, M.A. Quevedo-Lopez, S. Gowrisanker, H.N. Alshareef, H.J. Stiegler, B.E. Gnade, J Comput. Electron. 10, 144 (2011).

https://doi.org/10.1007/s10825-010-0311-1

. N. Koch, A. Kahn, J. Ghijsen, J.J. Pireaux, J. Schwartz, R.L. Johnson, A. Elschner, Appl. Phys. Lett. 82, 70 (2003).

http://dx.doi.org/10.1063/1.1532102

. R.T. Tung, Phys. Rev. B, 64, 205310 (2001).

https://doi.org/10.1103/PhysRevB.64.205310

. P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson, Solid-State Electron. 47, 259 (2003).

https://doi.org/10.1016/S0038-1101(02)00204-6

. H.L. Cheng, Y.S. Mai, W.Y. Chou, L.R. Chang, X.W. Liang, Adv. Funct. Mater. 17, 3639 (2007).

https://doi.org/10.1002/adfm.200700207

. R. Matsubara, N. Ohashi, M. Sakai, K. Kudo, M. Nkamura, Appl. Phys. Lett. 92, 242108 (2008).

http://dx.doi.org/10.1063/1.2943659

. B. Bräuer, R. Kukreja, A. Virkar, H.B. Akkerman, A. Fognini, T. Tyliszczac, Z. Bao, Organic Electron. 12, 1936 (2011).

https://doi.org/10.1016/j.orgel.2011.08.007

. E.J. Meijer, G.H. Gelinck, E. van Veenendaal, B.H. Huisman, D.M. de Leeuw, T.M. Klapwijk, Appl. Phys. Lett. 82, 4576 (2003).

http://dx.doi.org/10.1063/1.1581389

. T. Ahn, H.J. Suk, J. Won, M.H. Yi, Microelectron. Eng. 86, 41 (2009).

https://doi.org/10.1016/j.mee.2008.09.007

. J. Li, H.P. Lin, F. Zhou, W.Q. Zhu, X.Y. Jiang, Z.L. Zhang, Curr. Appl. Phys. 12, 280 (2012).

https://doi.org/10.1016/j.cap.2011.06.020

. J.E. Northrup, M.L. Chabinyc, Phys. Rev. B 68, 041202(R) (2003).

https://doi.org/10.1103/PhysRevB.68.041202

. C.D. Dimitrakopoulos, D.J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).

https://doi.org/10.1147/rd.451.0011

. D.J. Gundlach, T.N. Jackson, D.G. Schlom, S.F. Nelson, Appl. Phys. Lett. 74, 3302 (1999).

http://dx.doi.org/10.1063/1.123325

. Z.T. Zhu, J.T. Mason, R. Dieckmann, G.G. Malliaras, Appl. Phys. Lett. 81, 24 (2002).

http://dx.doi.org/10.1063/1.1527233

Downloads

Published

2017-11-26

Issue

Section

Research Papers

How to Cite

Influence of active layer thickness, device architecture and degradation effects on the contact resistance in organic thin film transistors. (2017). Superficies Y Vacío, 30(3), 46-50. https://doi.org/10.47566/2017_syv30_1-030046