Structural, Optical and Morphological Properties of InxGa1-xAs Layers Obtained by RF Magnetron Sputtering


RF magnetron sputtering
Semiconducting ternary alloys

How to Cite

Bernal Correa, R., Pulzara Mora, A., Montes Monsalve, J., Morales Acevedo, A., Gallardo Henandez, S., & López López, M. (2016). Structural, Optical and Morphological Properties of InxGa1-xAs Layers Obtained by RF Magnetron Sputtering. Superficies Y Vacío, 29(2), 32-37. Retrieved from


Indium gallium arsenide layers (InxGa1-xAs) were prepared on Silicon (100) and glass substrates in an argon atmosphere by R.F. magnetron sputtering. The growth temperature was 580 °C and high purity targets of gallium arsenide and indium were used. The effects due to the RF power for the In sputtering and the substrate type on the deposited films were studied by X-ray diffraction and Raman microscopy. These studies revealed the formation of InxGa1-xAs with the zinc-blende phase. The results also show that at low In sputtering RF power, there is a preferential growth along of (111) direction. Morphology and thickness of the layers were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), revealing a variation of particle size and roughness. Energy dispersive spectroscopy (EDS) allowed us to determine the atomic percentages of In, Ga, and As. These results are in agreement with Raman measurements, where GaAs-like and InAs-like LO and TO vibrational modes were observed with a shift attributed to the indium concentrations in the InxGa1-xAs layers. By secondary ion mass spectroscopy (SIMS), the interface quality was studied. We conclude that at low In sputtering RF power InxGa1-xAs layers highly oriented along the (111) plane are obtained.


W. Sarney, S. Svensson, “Characterization of compositional oscillations in InGaAs films induced by MBE cell configuration and substrate rotation” Materials Characterization 58 2007 pp 284–288.

T. Sasaki, A. Norman, M. Romero, M. Al-Jassim, M. Takahasi, N. Kojima, Y. Ohshita, M. Yamaguchi, “Defect characterization in compositionally graded InGaAs layers on GaAs(001) grown by MBE” Phys. Status Solidi C 10 2013 pp 1640–1643.

R. Cisneros, I. Guerrero, G. Polupan, T. Torchynska, J. Palacios, “Emission of InAs quantum dots embedded in InGaAs/InAlGaAs/GaAs quantum wells” J. of Luminescence 149 2014 pp 1–6

B. Zvonkov, S. Nekorkin, O.Vikhrova, V. Dikareva, “Emission properties of heterostructures with a (GaAsSb-InGaAs)/GaAs bilayer quantum well” Semiconductors, 47 (2013) 1219-1223.

Q. Guo, T. Nakao, T. Ushijima, W. Shi, F. Liu, K. Saito, T. Tanaka, M. Nishio, “Growth of InGaN layers on (1 1 1) silicon substrates by reactive sputtering” J. Alloys and Comp 587 2014 pp 217–221

J. Baoshan, W. Yunhua, Z. Lu, B. Duanyuan, Q. Zhongliang, G. Xin, B. Baoxue, Influence of sputtering pressure on optical constants of a-GaAs1xNx thin films J. Semiconductors 33 2012 pp 083002

B. Yadav, S. Major, R. Srinivasa, “Reactively sputtered GaAsxN1−x thin films” Thin Solid Films 515 2006 pp 1043–1046

A. Pulzara-Mora, M. Meléndez-Lira, S. Jiménez-Sandoval, M. López-López, “Study of the structural and optical properties of GaPN thin films grown by magnetron RF sputtering” Vacuum 80 2006 pp 468–474.

T. Zens, P. Becla, A. Agarwal, L. Kimerling, A. Drehman “Long wavelength infrared detection using amorphous InSb and InAs0.3Sb0.7” J. Crystal Growth 334 2011 pp 84–89

A. Boronat, S. Silvestre, L. Castañer, “Optical and compositional characterization of GaAs(Ti) thin films deposited by R.F. magnetron sputtering” J. of Non-Crystalline Solids 359 2013 pp 21–26.

Y. Nishijima, O. Akasaka, K. Nakajima, K. Otsubo, H. Ishikawa, “InGaAs ternary bulk crystal growth method using InGaAs ternary source” International Conference on Indium Phosphide and Related Mater, 2001 pp 125-128.

L. Gelczuk, M. Dąbrowska, “Modification of energy bandgap in lattice mismatched InGaAs/GaAs heterostructures” Opt. Appl. 39 2009 pp 845-852.

M. Boudaa, P. Regreny, J. Leclercq, M. P. Besland, O. Marty, G. Hollinger, “Growth and characterization of totally relaxed InGaAs thick layers on strain-relaxed paramorphic InP substrates” J. Electronics Mater. 33 2004 pp 833-839.

P. Chavarkar, S. K. Mathis, L. Zhao, S. Keller, J. S. Speck, U. K. Mishra, “Strain relaxation in InGaAs lattice engineered substrates” J. Electronics Mater. 29 2000 pp 944-949.

Y. Wen, Y. Wang, K. Watanabe, M. Sugiyama, Y. Nakano, “Effect of GaAs Step Layer on InGaAs/GaAsP Quantum Well Solar Cells” Appl. Phys. Express 4 2011 pp 1-3.

M. Venegas, R. Bernal, M. López, A. Pulzara, “Microstructure AFM study and raman spectra of In-GaAs bilayers prepared by R.F. magnetron sputtering on Si(100) substrates” J. Physics: Conference Series 480 2014 pp 012017

Y. Yanping, L. Chunling, Q. Zhongliang, L. Mei, G. Xin, B. Baoxue, “Optical and electrical properties of a-InGaAs:H films prepared by double-target magnetron Co-sputtering” IEEE International Nanoelectronics Conference 2 2008 pp 411-414.

L. X.Qiang, “Epitaxial growth of Ga x In1−x As film by RF sputtering and physical properties of the films” J. Shanghai University. 4 (2000) 163-166.

M. Aslan, B. G. Yalcin, M. Üstündag, “Structural and electronic properties of Ga1−xInx As1−yNy quaternary semiconductor alloy on GaAs substrate” J. Alloys Comp. 519 2012 pp 55– 59.

M. F. Whitaker, D. J. Dunstan, “Raman spectroscopy of GaAs and InGaAs under pressure” J. Phys. Condensed. Matter. 11 1999 pp 2861–2868.

R. Islam, V. Prabhat, Y. Masayoshi, T. Masami, K. Kyoichi, “Micro-Raman Characterization of Starting Material for Traveling Liquidus Zone Growth Method” Jpn. J. Appl. Phys. 41 2002 pp 991-995.

Y. K. Yeo, A. C. Bergstrom, R. L. Hengehold, J. W. Wei, S. Guha, L. P. Gonzalez, G. Rajagopalan, M. Y. Ryu “Optical and Electrical Properties of Bulk-grown Ternary InxGa1−xAs” J. Korean Phys. Society. 58 2011 pp 1267-1273.

D. Dorranian, L.Dejam, G. Mosayebian, “Investigation of nitrogen plasma effect on the nonlinear optical properties of PMMA” J. Theor. Appl. Phys. 6 (2012) 1-9.

E.R. Shaaban, Y.A.M. Ismail, H. Shokry Hassan, “Compositional dependence of the optical properties of amorphous Se80 − xTe20Bix thin films using transmittance and reflectance measurements” J. of Non-Crystalline Solids 376 (2013) 61–67.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Array