MWCNTs oxidation by thermal treatment with air conditions
Keywords:
carbon nanotubes, oxidation, carbonyl groupAbstract
A process of functionalization, generally using acids, has to occur in order to use carbon nanotubes for different applications. The aim of this research was the oxidation of MWCNTs at air presence with thermal treatment. MWCNTs were obtained using benzene and ferrocene. The MWCNTs were heated into an electric furnace. Temperature ranged between 270 – 600 °C. The samples were characterized by SEM, EDS, XRD, FTIR and Raman. The results shown lost in weight percentage that fluctuated from 0 to 78% according to different temperature conditions. FTIR analysis demonstrated presence of carbonyl groups and decrease of CHx.References
. N. Sahoo, S. Rana, J. Whan, L. Li, S.Chana, Prog. Polym. Sci. 37, 837 (2003).
. M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Muñoz-Sandoval, A.G. Cano-Márquez, J.C. Charlier, H. Terrones, Nano Today 5, 351 (2010).
. J.Thomassina, I. Huynenb, R. Jeromea, C. Detrembleur, Polymer 51, 115 (2010).
. L. Stobinski, B. Lesiaka,L. Kövér, J. Tóthc, S. Biniak, G. Trykowski, J. Judek, J. of alloys and compounds 501, 77 (2010).
. B. Scheibe, E. Borowiak-Palen, R. Kalenczuk, Mater. Charact. 61, 185 (2010).
. B. Kim, W. Sigmund, Langmuir 20, 8239 (2010).
. F. López-Urías, M. Terrones, H. Terrones, Carbon 84, 317 (2015).
. L.Ravelo-Pérez, A. Herrera-Herrera, J. Hernández-Borges, M. Rodríguez-Delgado, J. Chromatogr. A 1217, 2618 (2010).
. C. Li, D. Wang, T. Liang, X. Wang, J. Wu, X. Hu, J. Liang, Powder technology, 142, 175 (2004).
. N, Dementev, S. Osswald, Y. Gogotsib, E. Borgue, J. Mater. Chem. 19, 7904 (2009).
. A. Gómez, P. González, L. García, F. Granados, N. Flores, V. López, L. Domratcheva, J. Anal. Appl. Pyrol. 113, 483 (2015).
. L. Domratcheva, E. Domracheva, A. Zaitsev, L. Mikhalitsyn, G. Markin, A. Ob'edkov, L. Leites, B. Kaverin, S. Bukalov, G. Domrachev, Fullerenes, Nanotubes and Carbon Nonstructures 14,
(2006).
. Y. Shiratori, H. Hiraoka, M. Yamamoto, Mater. Chem. Phys. 87, 31 (2004).
. S. Lefrant, I. Baltog, M.Baibarag, J. Schreiber, O.Chauvet, Phys. Rev. B 65, 235 (2002).
. M. Dresselhaus, G. Dresselhaus, R. Saitoc , A. Joriod, Phys. Rep. 409, 47 (2005).
. Y. Jung, D.Jeon, Appl. Surf. Sci., 193, 129 (2002).
. E. Antunes, A. Lobo, E. Corat, B. Trava-Airoldi, Carbon 45, 913 (2007).
. G. Allaedini, P. Aminayi, S. Tasirin, J. Nanomater. 501, 961231 (2015).
. P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, K. Barai, A.K. Mondal, S. Sarangi, G.K. Dey, S.V. Subramanyam, Solid State Commun. 145, 143 (2008).
. H. Khani, O. Moradi, J. Nanostr. Chem. 3, 73(2013).
. A Cao, C Xu, J Liang, D Wu, B Wei, Chem Phys. Lett. 344, 13 (2001).
. D. Pavia, G. Lampman, G. Kriz, J. Vyvyan, Introduction to spectroscopy, 4th Ed. (Brooks Cole, 2008).
. L.Teng, T. Tang, J. Zhejiang Univ-Sc A 9, 720 (2008).
. D. Mawhinney, J. Yates, Carbon 39, 1167 (2001).
Downloads
Published
Issue
Section
License
©2025 by the authors; licensee SMCTSM, Mexico. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).