MWCNTs synthesis from butanol, diethyl ether, ethyl acetate and hexane by chemical vapor deposition with a stainless steel core as catalyst
PDF

Keywords

Carbon nanotubes
Chemical Vapor Deposition
Characterization

How to Cite

Granados Martínez, F. G., Contreras Navarrete, J. de J., García Ruiz, D. L., Gutiérrez García, C. J., Durán Navarro, A., Gama Ortega, E. E., Flores Ramírez, N., Domratcheva Lvova, L., García González, L., Zamora Peredo, L., & Mondragón Sánchez, M. de L. (2015). MWCNTs synthesis from butanol, diethyl ether, ethyl acetate and hexane by chemical vapor deposition with a stainless steel core as catalyst. Superficies Y Vacío, 28(4), 108-110. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/32

Abstract

A stainless steel core catalyst with several green precursors, butanol, diethyl ether, ethyl acetate and hexane, were used to obtain multi-walled carbon nanotubes via chemical vapor deposition. Argon was used as carrier gas at 50-90 ml/min rates. Samples were synthetized at 680-850 ºC, according to the precursor used. The characterization techniques were scanning electronic microscopy, X-ray diffraction, energy dispersive, Fourier transformed infrared and Raman spectroscopy. Themicrographs  showed  tangled carbon  nanotubes formation  with  different diameters from  50-300  nm.  Elemental analysis indicated  carbon atomic percentages ranging from 93-99 %, 1.0-4.5 % iron and  less than 1% of  manganese,  chrome and silicon. X-Ray diffraction demonstrated the characteristic carbon nanotubes peak (002)at 26°. G and D carbon nanotubes distinctive bands were confirmed by Raman spectra for all samples.
PDF

References

. P. Anastas, J. Zimmerman, Environ. Sci. Technol. 37, 94A (2003).

. M. Kumar, Y. Ando, J. Nanosci. Nanotech. 10, 3739 (2010).

. E. Van Hooijdonk, C. Bittencourt, R. Snyders, J. F. Colomer, Beilstein J. Nanotechno. 4, 129 (2013).

. Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, Chem. Phys. Lett. 374, 53 (2003).

. A. Grüneis, M. Rümmeli, C. Kramberger, A. Barreiro, T. Pichler, R. Pfeiffer, H. Kuzmany, T. Gemming, B. Büchner, Carbon 44, 3177 (2006).

. A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 103, 6484 (1999).

. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 360, 229 (2002).

. H. Qi, C. Qian, J. Liu, Chem. Mater. 18, 5691 (2006).

. H. E. Unalan, M. Chhowalla, Nanotechnology 16, 2153 (2005).

. A. Gómez, P. González, L. García, F. Granados, N. Flores, V. López, L. Domratcheva, J. Anal. Appl. Pyrol. 113, 483 (2015).

. S. Paul, S. Samdarshi, New Carbon Mater. 26, 85 (2011).

. P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301 (2010).

. B. Karn, S. S. Wong, Sustainable nanotechnology and the environment: advances and achievements 1124, American Chemical Society 1124, 1 (2013).

. D. Pavia, G. Lampman, G. Kriz, J. Vyvyan, Introduction to spectroscopy: cengage learning, ed. Cole, 4th E, 2008.

. L. H. Teng, j. Zhejiang Univ-Sc A 9, 720 (2008).

. Y. S. Jung, D. Y. Jeon, Appl. Surf. Sci. 193, 129 (2002).

. N. Kouklin, M. Tzolov, D. Straus, A. Yin, J. Xu, Appl. Phys. Lett. 85, 4463 (2004).

. Y. Luo, D. Kong, Y. Jia, J. Luo, Y. Lu, D. Zhang, Q. Kangwen, L. Chang, Y. Ting, Rsc Advance 3, 5851-5860.

. G. Allaedini, P. Aminayi, S. M. Tasirin, J. Nanomater. 501, 961231 (2015).

. P. Mahanandia, P. Vishwakarma, K. Nanda, V. Prasad, K. Barai, A. Mondal, S. Sarangi, G. K. Dey, S.V. Subramanyam, Solid State Commun. 145, 143 (2008).

. A. Cao, C. Xu, J. Liang, D. Wu, B. Wei, Chem Phys. Lett. 344, 13 (2001).

. Y. Shiratori, H. Hiraoka, M. Yamamoto, Mater. Chem. Phys. 87, 31 (2004).

. E. Antunes, A. Lobo, E. Corat, V. Trava-Airoldi, Carbon 45, 913 (2007).

. M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005).