Bismuth based nanostructures supported on TiO2 thin films and its photocatalytic performance
PDF (Español (España))

Keywords

Photocatalysis
Bismuth oxide
Titanium oxide
Malachite Green. Fotocatálisis
Óxido de Bismuto
Óxido de Titanio
Verde de Malaquita.

How to Cite

Velarde Granados, E., Escobar Alarcón, L., Espinosa Pesqueira, M., Solís Casados, D. A., Encarnación Gómez, C., Olea Mejía, O. F., & Haro Poniatowski, E. (2016). Bismuth based nanostructures supported on TiO2 thin films and its photocatalytic performance. Superficies Y Vacío, 28(2), 54-60. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/26

Abstract

The preparation of composite materials, formed with bismuth based nanostructures supported on titanium dioxide (TiO2) films, as well as their application as photocatalysts for the degradation of a malachite green dye solution is reported. The nanostructures were obtained by the laser ablation technique in liquid medium, depending on the preparation conditions, Bi or Bi2O3 nanoparticles, or Bi2O3 nanosheets are obtained. Thin films were deposited by CVD obtaining the TiO2 anatase phase. Catalyst activation was carried out using a solar simulator irradiating at 31 mW/cm2. The degree of degradation of malachite green was determined by measuring the decrease in the intensity of its characteristic absorption band at 619 nm. In general terms, the results show that thin films with Bi based nanostructures supported exhibit a better photocatalytic activity than the TiO2 sample.
PDF (Español (España))

References

M. Nageeb Rashed, (Edit.), Organic Pollutants- Monitoring, Risk and Treatment, InTech, Croatia (2013).

J. Pérez Álvarez, D. A. Solís Casados, S. Romero, L. Escobar Alarcón, Advanced Materials Research 976, 212 (2014).

K. Madhusudan Reddy, B. Baruwati, M. Jayalakshmi, M. Mohan Rao, S. V. Manorama, Journal of Solid State Chemistry 178, 3362 (2005).

S. Lei y W. Duan, Journal of Environmental Sciences 20, 1263 (2008).

L. Wang, J. Zhang, C. Li, H. Zhu, W. Wang, T. Wang, J. Matter Sci. Technol. 27, 59 (2011).

R. Chen, Z. R. Shen, H. Wang, H. J. Zhou, Y. P. Liu, D. T. Ding, T. H. Chen, Journal of Alloys and Compounds 509, 2588 (2011).

G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, J. Qiu y Z. Xu, Journal of Alloys and Compounds 507, 143 (2010).

A. Martínez de la Cruz y S. Obregón Alfaro, Journal of Molecular Catalysis A: Chemical 320, 85 (2010).

R. Solarska, A. Heel, J. Ropka, A. Braun, L. Holzer, J. Ye, T. Graule, Applied Catalysis A: General 382, 190 (2010).

L. Escobar-Alarcón, E. Velarde-Granados, D. Villa-Sánchez, O. Olea-Mejía, E. Haro-Poniatowski, A. Arrieta-Castañeda, D. A. Solís-Casados, Advanced Materials Research 976,196 (2014).

J.Fang, K. L. Stokes, W. L.Zhou, J. A.Wiemann, J. Dai, C. J. O'Connor, in: International Symposium on Cluster and Nanostructure Interfaces, (Richmond, Virginia, USA, 1999) p. 91.

Trentelman K, J. Raman Spectroscopy 40, 585 (2009).

L. Escobar-Alarcón, E. Haro-Poniatowski, M.A. Camacho- López, M. Fernández-Guasti, J. Jiménez-Jarquín, A. Sánchez- Pineda, Surface Engineering 15, 411 (1999).