Compounds of chitosan/Ag nanoparticles: conductivity and relaxation mechanisms and their relation with their macroscopic properties
PDF (Español (España))

Keywords

Chitosan
Silver nanoparticles
Bionanocomposite
Relaxation processes
Conductivity. Quitosano
Nanopartículas de plata
Bionanocompuestos
Procesos de relajación
Conductividad.

How to Cite

González Campos, J. B., del Río Rosa, E., Prokhorov, E., & Luna Bárcenas, J. G. (2012). Compounds of chitosan/Ag nanoparticles: conductivity and relaxation mechanisms and their relation with their macroscopic properties. Superficies Y Vacío, 25(1), 43-48. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/227

Abstract

The aim of this work is to investigate the conductivity mechanisms and relaxation properties of chitosan-silver nanoparticle (AgnP´s) bionanocomposites. Wet composites show the ?-relaxation process related to the glass transition phenomena, whereas, in dry composites (moisture content < 0.2 %), the glass transition disappeared. DC conductivity has shown that the dry composites exhibit a percolation threshold at 2 wt% of AgnP’s. And a 2-D hopping conductivity is observed in the 2-70°C temperature range for dry composites with wt% of AgnP’s < 2wt%. Conductivity and relaxation time temperature dependencies disclose the ?-relaxation associated with a migration property of movable hydrogen ions. This relaxation process is observed in all nanocomposites in the 70°C-180°C temperature range.
PDF (Español (España))

References

. D. Wei, W. Sun, W. Qian, Y. Ye, X. Mac. Carbohydrate Research, 344, 2375, (2009).

. N. Sanvicens, C. Pastells, N. Pascual, M.-Pilar Marco. Trends in Analytical Chemistry, 25, 1243, (2009).

. J. W. Rhim, S. I. Hong, H. M. Park. J. Agric. Food Chem., 54, 5814, (2006).

. J. B. González-Campos, E. Prokhorov, G. Luna-Bárcenas, A. Mendoza-Galván, I. C. Sanchez, S. M. Nuño-Donlucas, B. García-Gaytan, Y. Kovalenko. J. Polym. Sci. B, 47, 932, (2009).

. Y. Wan, K. A. M. Creber, B. Peppley, V. T. Bui. Polymer, 44, 1057, (2003).

. J. B. González-Campos, E. Prokhorov, G. Luna-Bárcenas, A. Fonseca-García, I. C. Sanchez.J. Polym. Sci. B, 47, 2259, (2009).

. G. G. Raju. Dielectrics in Electrical Fields. Marcel Dekker Inc.: (New York, 2003).

. G. M. Tsangaris, G. C. Psarras, N. Kouloumbi. J. Mat. Sci., 33, 2027, (1998).

. M. Köhler, P. Lunkenheimer, A. Loidl. Eur Phys J E. 27, 115, (2008).

. A. Heilmann. Polymer films with embedded metal nanoparticles: Springer (2003).

. J. Fraysse J. Planes., Phys. Stat. Sol. (B) 218, 273 (2000).

. Kirkpatrick S. Rev. Mod. Phys. 45, 574, (1973).

. D. Stauffer, A. Aharony. Introduction to percolation theory. Taylor & Francis: (London 1994).

. F. Mott. Metal–insulator transitions. Taylor & Francis: London (1990).

. G.C. Psarras. Composites: Part A, 37, 1545, (2006).

. S. Capaccioli, M. Lucchesi, P. A. Rolla, G. Ruggeri. J. Phys.: Condens. Matter., 10 5595, (1998).

. V.R. Nikitenko, A.R. Tameev, A.V. Vannikov. Semiconductors, 44, 211, (2010).

. F. Kremer, A. Schonhals (Eds). Broad Dielectric Spectroscopy, Springer-Verlag, (Berlin 2003).

. Einfeldt J, Meibner D, Kwasniewski A. J Non-cryst solids, 320, 40, (2003).