Abstract
Colloidal dispersions of InP@ZnS nanoparticles were prepared using a single-step heating-up method relying at low temperature. The obtained particles are highly crystalline, monodisperse and exhibit size-dependent radiative emission in the range of 329?480 nm. By simply varying the concentration of the molecular precursor, the particles size can be controlled in the range from about 1.1 to 4.5 nm. The formation of InP nanocrystals has been confirmed using the techniques TEM, HRTEM, PL and UV-Vis spectroscopy.
References
. R.M. Iost, J.M. Madurro, A.G. Brito-Madurro, I.L. Nantes, L. Caseli, F.N. Crespilho, Int. J. Electrochem. Sci. 6, 2965 (2011).
. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Letters 1, 207 (2001).
. X. Peng, Chem. Eur. J. 8, 334 (2002).
. A.P. Alivisatos, Science 271, 933 (1996).
. J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, T. Nann, Adv. Mater. 20, 4068 (2008).
. S. Gao, C. Zhang, Y. Liu, H. Su, L. Wei, T. Huang, N. Dellas, S. Shang, S.E. Mohney, J. Wang, J. Xu, Optics Express 19, 5528 (2011).
. G. Shen, P. Chen, Y. Bando, D. Golberg, C. Zhou, Chem. Mater. 20, 6679 (2008).
. P. Holmström, L. Thylén and A. Bratkovsky, Appl. Phys. Lett. 97, 073110 (2010).
. C.A. Cattley, A. Stavrinadis, R. Beal, J. Moghal, A.G. Cook, P.S. Grant, J.M. Smith, H. Assender, A.A.R. Watt, Chem. Commun. 46, 2802 (2010).
. U.T.D. Thuy, P.S. Toan, T.T.K. Chi, D.D. Khang, N.Q. Liem, Adv. Nat. Sci: Nanosci. Nanotechnol 1, 045009 (2010).
. P. Reiss, J. Bleuse, A. Pron, Nano Letters 2, 781 (2002).
. J.M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998).
. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005).
. S. Kim, Y.T. Lim, E.G. Soltesz, A.M. De Grand, J. Lee, A. Nakayama, J.A. Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi, Nature Biotechnology 22, 93 (2004).
. O.I. Micic, J.R. Sprague, C.J. Curtis, K.M. Jones, J.L. Machol, A.J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, J. Phys. Chem. 99, 7754 (1995).
. Y. Wang, J. Lu, Z. Tong, B. Li, L. Zhou, Bull. Chem. Soc. Ethiop. 25, 393 (2011).
. L. Li, P. Reiss, J. Am. Chem. Soc. 130, 11588 (2008).
. R. Xie, D. Battaglia, X. Peng, J. Am. Chem. Soc.129, 15432 (2007).
. J.R. Heath, J.J. Shiang, Chem. Soc. Rev. 27, 65 (1998).
. W. Xu, Y. Wang, R. Xu, S. Liang, G. Zhang, D. Yin, J. Mater Sci. 42, 6942 (2007).
. Celso de M. Donegá, P. Liljeroth, D.A.M. Vanmaekelbergh, Small 1, 1152 (2005).
. U.T.D. Thuy, T.T.T. Huyen, N.Q. Liem, P. Reiss, Mater. Chem. Phys. 112, 1120 (2008).
. L. Li, M. Protière, P. Reiss, Chem. Mater. 20, 2621 (2008).
. B. Koppenhoefer, K. Hintzer, R. Weber, V. Schurig. Angew, Chem. Int. Ed. Engl. 19, 471 (1980).
. S. Xu, S. Kumar, T. Nann. J. Am. Chem. Soc. 128, 1054 (2006).
. D.W. Lucey, D.J. MacRae, M. Furis, Y. Sahoo, A.N. Cartwright, P.N. Prasad, Chem. Mater. 17, 3754 (2005).
. D.V. Talapin, N. Gaponik, H. Borchert, A.L. Rogach, M. Haase, H. Weller, J. Phys. Chem. B 106, 12659 (2002).
. R. Xie, D. Battaglia, X. Peng. J. Am. Chem. Soc. 129, 15432 (2007).
. O.I. Micic, S.P. Ahrenkiel, AJ. Nozik, Appl. Phys. Lett., 78, 4022 (2001).
. L. Li, P. Reiss, J. Am. Chem. Soc. 130, 11588 (2008).
. S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, J. Am. Chem. Soc. 129, 11708 (2007).
. L.C. Hernandez, L. Ponce, E. Rodriguez, A. Fundora, G. Santana, J.L. Menchaca, E. Pérez-Tijerina, Nanoscale Research Letters 7, 80 (2012).
. B. Barman, K.C. Sarma, Chalcogenide Letters. 8, 171 (2011).
. B. R. Bennett, R.A. Soref, J.A. del Alamo, IEEE Journal of Quantum Electronics 26, 113 (1990).
. L.G. Vega Macotela, J. Douda, T.V. Torchynska, R. Pena Sierra, L. Shcherbyna, Phys. Status Solidi (c) 7, 724. (2010).