Effect of the phase composition and crystallite size of sol-gel TiO2 nanoparticles on the acetaldehyde photodecomposition
PDF

Keywords

Ti
Sol-gel
Photodecomposition
acetaldehyde
anatase
brookite

How to Cite

Carrera López, R., & Castillo Cervantes, S. (2012). Effect of the phase composition and crystallite size of sol-gel TiO2 nanoparticles on the acetaldehyde photodecomposition. Superficies Y Vacío, 25(2), 82-87. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/208

Abstract

TiO2 nanoparticles with attractive physicochemical properties have synthesized by means of the sol-gel method and acid hydrolysis. The obtained nanoparticles have characterized by the XRD-Rietveld refinement, BET and TEM techniques, and tested in the photodecomposition of acetaldehyde. The degree of decomposition of acetaldehyde by the sol-gel TiO2 nanoparticles was directly proportional to the brookite mass fraction but inversely proportional to the anatase mass fraction and crystallite size.

PDF

References

. O. Carp, C. L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004).

. E. Obuchi, T. Sakamoto, K. Nakano, Chem Eng Sci. 54 1525 (1999).

. M. Zhou, J. Yu, B. Cheng, H. Yu, Mater. Chem. Phys. 93, 159 (2005).

. T. Maekawa, K. Kurosaki, T. Tanaka, S. Yamanaka, Surf. Coat. Technol. 202, 3067 (2008).

. C.-S. Kim, B.K. Moon, J.-H. Park, S.T. Chung, S.-M. Son, J. Cryst. Growth. 254, 405 (2003).

. M. R. Teresa Viseu, M.I.C. Ferreira, Vacuum 52, 115 (1999).

. 12. J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, W.K. Ho, J. Phys. Chem. B 107, 13871 (2003).

. N.R. de Tacconi, C.R. Chenthamarakshan, G. Yogeeswaran, A. Watcharenwong, R.S. de Zoysa, A.N. Basit, K. Rajeshwar, J. Phys. Chem. B 110, 25347 (2006).

. D.S. Kim, S.-Y. Kwak, Appl. Catal. A Gen. 323, 110 (2007).

. R. Carrera, A. L. Vázquez, E. Arce, M. Moran-Pineda, S. Castillo, J. Alloys Compd. 434-435 788 (2007).

. J. C. Yu, J. G. Yu, W. K. Ho, J. C. Zhao, Chem. Commun. 19 1942 (2001).

. N. Venkatachalam, M. Palanichamy, V. Murugesan, Mater. Chem. Phys. 104 454 (2007).

. N. Mahdjoub, N. Allen, P. Kelly, V. Vishnyakov, J. Photochem. Photobiol. A 210 125 (2010).

. R. Carbajal, Phys. B 192, 55 (1993).

. X. Orlhac, C. Fillet, P. Deniard, A. M. Dulac, R. Brec, J. Appl. Cryst. 34, 114 (2001).

. J. W. Reid, J. A. Hendry, Appl. Cryst. 39 536 (2006).

. S. Castillo, M. Morán-Pineda, V. Molina, R. Gómez, T. López, Appl. Catal. B 15 203 (1998).

. R. C. Nádia, F. Machado, V. S. Santana, Catal. Today 107-108 595 (2005).

. K. R. Zhu, M. S. Zhang, J. M. Hong, Z. Yin, Mater. Sci. Eng. A 403 87 (2003).

. A. J. Patil, M .H. Shinde, H. S. Potdar, S. B. Deshpande, Mater. Chem. Phys. 68 7 (2001).

. X. X. Fan, T. Yu, L.-Z. Zhang, X.-Y. Chen, Z.-G. Zou, Chin. J. Chem. Phys. 20 733 (2007).

. I. Sopyan, M. Watanabe, s. Murasawa, K. Hashimoto, J. Photochem. Photobiol. A 98 79 (1996).

. S. Wang, H. M. Ang, M. O. Tade, Environ. International 33 694 (2007).

. T. López, R. Gomez, E.Sanchez, F. Tzompantzi, J. Sol-Gel Sci. Technol. 22 99 (2001).

. S. Boujday, F. Wünsch, P. Portes, J. F.Bocquet, C. Colbeau-Justin, Sol. Energy Mater. Sol. Cells 83 421 (2004).

. J.-G. Li, C. Tang, D. Li, H. Haneda, T. Ishigaki, J.Am. Ceram. Soc. 87 1358 (2004).

. S. Bakardjieva, V. Stengl, L. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jrkovsky, N. Petrova, J. Mater. Chem. 16 1709 (2006).

. A. Di Paola. G. Cufalo, M. Addamo, M. Ballardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Colloid Surface A 317 366 (2008).