Synthesis and characterization of boron nitride stoichiometric nanostructures
PDF (Español (España))

Keywords

Nanostructure
CVD
FT-IR
Boron nitride
Borazine. Nanoestructura
CVD
FT-IR
Nitruro de boro
Borazina.

How to Cite

Nocua, J. E., Morell, G., Piazza, F., & Weiner, B. R. (2012). Synthesis and characterization of boron nitride stoichiometric nanostructures. Superficies Y Vacío, 25(3), 194-198. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/205

Abstract

Boron nitride (BN) nanostructures are chemically inert, electrically insulating, and potentially important in mechanical applications. Using borazine (B3N3H6) gas as chemical precursor and the Chemical Vapor Deposition (CVD) BN nanostructures were obtained at a rate of 80.5 g/h, with sizes ranging between 20 and 50 nm. Their structure, morphology and chemical composition were analyzed by: X-ray, TEM, EDS, FT-IR, EELS and XPS. Taken altogether, the results obtained show that all the nanostructured material is stoichiometric BN with hexagonal and rhombohedral structure.
PDF (Español (España))

References

Z. Karim, D. C. Cameron, M.J. Murphy, J. Hashmi, and E. Masme, Eurotech Direct ’91, Materials and Processes. Engin.TA401.3.E96 , 181 (1991).

Ng. Man-Fai, and R.Q. Zhang, Phys. Rev. B69, 115417 (2004).

G.G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, and J. Fink, Phys. Rev. B 67, 035429 (2003).

W. Han, W. Mickelson, J. Cumings, and A. Zettl, Appl. Phys. Let. 81, 1110 (2002).

L.A. Chernozatonskii, E.G. Galpern, I.V. Stankevich, and Y.K. Shimkus, Carbon 37, 117 (1999)

D. Golberg, Y. Bando, M. Mitome, K. Kurashima, N. Grobert, M. Reyes-Reyes, H. Terrones, and M. Terrones, Chem. Phys. Lett. 360, 1 (2002)

A. Bath, P.J. Van der Put, L. Schoonman, and B. Lepley, Appl. Surf. Sci. 39, 135 (1989)

H. Miyamoto, M.Horose, and Y.Osaka, Japn. J. of Appl. Phys. 22 [4], L216 (1983)

S. Ijima, Nature (London) 354, 56 (1991).

O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, and W.E. Buhro, Chem. Mater. 12, 1808 (2000).

L. Liang-xu, Z. Ying, Z. Yong, and W. Ke-mei, Mater. Lett. 61, 1735 (2007).

W. Mickelson, S. Aloni, W.Q. Han, J. Cumings, and A. Zettl, Science 300, 467 (2003).

T. Oku, M. Kuno, H. Kitahara, and I. Narita, Int. J. Inorg. Mater. 3, 597 (2001).

F.L. Deepack, C.P. Vinod, K. Mukhopadhyay, A. Govindaraj, and C.N. R. Rao, Chem. Phys. Lett. 353, 345 (2002).

T. Oku, K. Hiraga, T. Matsuda, T. Hirai, and M. Hirabayashi, Diamond Relat. Mater. 12, 1918 (2003).

A. Essafti, Bol. Soc. Esp. Ceram. V. 46 [3], 127 (2007).

S. Shanfield and R. Wolfson, J. Vac. Sci. Technol. A 1, 323 (1983).

V. Alexandrov and N.A. Enikeev, Mat. Sci. and Eng. 286 [1], 110 (2000).

D.R. McKenzie, W.D. McFall, W.G. Sainty, C.A. Davis, and R.E. Collins, Diam and Relat. Mater. 2, 970 (1993).

L. Y. Chen, Y.L. Gu, Z.F. Li, Y.T. Qian, Z.H. Yang, and J.H. Ma, J. Cryst. Grown 273, 646 (2005).

W. X. Pan, L. Vandenbulcke, J.P. Rouan, P. Baillif, and R. Erre, J. Mater Sci. 29, 1417 (1994).

L. Yu, B. Gao, Z. Chen, C. Sun, D. Cui, C. Wang, Q. Wang, and M. Jiang, Chinese Science Bulletin 50 [24], 2827 (2005).

P.B. Mirkarimi, K.F. Mccarty, and D.L. Medlin, Mater. Sci. Eng. R21, 47 (1997).

M. Yu, K. Li, De-L. Cui, S. Dong, Q. Wang, and M. Jiang, Chinese J, of Chem, 22, 528 (2004)

C. Gomez-Aleixandre, A. Essafti, and J.M. Albella, J. Phys. Chem. B, 104 [18], 4397 (2000)

A. Essafti, C. Gomez-Aleixandre, J.L.G. Fierro, M. Fernandez, and J.M. Albella, J. Mater. Res. 11 [10], 2565 (1996)

Y. Chen, M. Conway, and J.S. Williams, J. Mater. Res., 17 [8], 1896 (2002).

R.S. Lee, J. Gavillet, M. Lammy de la Chapelle, and A. Loiseau, Phy. Rev. B 64, 121405-1 (2001).