Bilayer thin films based on K3Bi2I9/MO (M=Ti, Zn, and Cu) for CO2 photoreduction
DOI:
https://doi.org/10.47566/2026_syv39_1-260101Keywords:
Halide perovskites, Lead-free metal halide perovskites (LFMHPs), Photocatalysis, CO2 reduction, Solar fuelsAbstract
This work reports the fabrication of bilayer thin films of K3Bi2I9/MO (M=Cu, Zn) as an extrinsic strategy to enhance the stability of lead-free metal halide perovskite for CO2 photoreduction. The perovskites were grown on mica substrates by the spin-coating technique, which serves as a seed layer for the deposition of TiO2, ZnO, and CuO oxides by physical (sputtering) and chemical (atomic layer deposition) techniques, respectively. The perovskite was effectively covered by simple oxides, mainly with the use of CuO by sputtering. The samples exhibited enhanced light absorption and better stability than the reference K3Bi2I9 perovskite. However, the efficiency of the bilayer films was lower than the reference for CO2 photoreduction was lower than the reference, probably due to the mismatch of the band engineering and the lower activity of the simple oxides compared to the perovskite. According to the results, the K3Bi2I9/CuO arrangement favored better stability and efficiency than the rest of the samples, which provides an alternative to design new and more stable optical devices for photocatalytic applications.
References
[1]. S. Yoshino, T. Takayama, Y. Yamaguchi, I. Akihide, A. Kudo, "CO2 Reduction Using Water as an Electron Donor over Heterogeneous Photocatalysts Aiming at Artificial Photosynthesis", Acc. Chem. Res. 55, 966 (2022).
https://doi.org/10.1021/acs.accounts.1c00676
[2]. A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, H. Tan, "Current technology development for CO2 utilization into solar fuels and chemicals: A review", J. Energy Chem. 49, 96 (2020).
https://doi.org/10.1016/j.jechem.2020.01.023
[3]. G. Sahara, O. Ishitani, "Efficient Photocatalysts for CO2 Reduction", Inorg. Chem. 54, 5096 (2015).
https://doi.org/10.1021/ic502675a
[4]. S. Zeng, P. Kar, U.K. Thakur, K. Shankar, "A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials", Nanotechnology 29, 052001 (2018).
https://doi.org/10.1088/1361-6528/aa9fb1
[5]. M.A. Raza, F. Li, M. Que, L. Zhu, X. Chen, " Photocatalytic reduction of CO2 by halide perovskites: recent advances and future perspectives", Mater. Adv. 2, 7187 (2021).
https://doi.org/10.1039/D1MA00703C
[6]. X. Fu, T. Ren, S. Jiao, Z. Tian, J. Yang, Q. Li, “Development strategies and improved photocatalytic CO2 reduction performance of metal halide perovskite nanocrystals”, J. Energy Chem. 83, 397 (2023).
https://doi.org/10.1016/j.jechem.2023.04.028
[7]. Z. Chen, Y. Hu, Y. Wang, Q. Shen, Y. Zhang, C. Ding, Y. Bai, G. Jiang, Z. Li, N. Gaponik, “Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes”, Chem. Mater. 32, 1517 (2020).
https://doi.org/10.1021/acs.chemmater.9b04582
[8]. E. Luévano-Hipólito, O.L. Quintero-Lizárraga, L.M. Torres-Martínez, “A Critical Review of the Use of Bismuth Halide Perovskites for CO2 Photoreduction: Stability Challenges and Strategies Implemented”, Catalysts 12, 1410 (2022).
https://doi.org/10.3390/catal12111410
[9]. O.L. Quintero-Lizárraga, E. Luévano-Hipólito, L.I. Ibarra-Rodríguez, L.M. Torres-Martínez, “Layered-Defect Perovskite K3Bi2X9 (X = I, Br, and Cl) Thin Films for CO2 Photoreduction: An Analysis of Their Pseudocatalytic Behavior”, Sustainability 15, 16835 (2023).
https://doi.org/10.3390/su152416835
[10]. S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou, “Band Structure Engineering of Carbon Nitride: In Search of a Polymer Photocatalyst with High Photooxidation Property”, ACS Catal. 3, 912 (2013).
https://doi.org/10.1021/cs4000624
[11]. Z.L. Liu, R.R. Liu, Y.F. Mu, Y.X. Feng, G.X. Dong, M. Zhang, T.B. Lu, “In Situ Construction of Lead-Free Perovskite Direct Z-Scheme Heterojunction Cs3Bi2I9/Bi2WO6 for Efficient Photocatalysis of CO2 Reduction”, Sol. RRL 5, 2000691 (2021).
https://doi.org/10.1002/solr.202000691
[12]. Y.X. Feng, G.X. Dong, K. Su, Z.L. Liu, W. Zhang, M. Zhang, T.B. Lu, “Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2”, J. Energy Chem. 69, 348 (2022).
https://doi.org/10.1016/j.jechem.2022.01.015
[13]. Z. Zhang, M. Wang, Z. Chi, W. Li, H. Yu, N. Yang, H. Yu, “Internal electric field engineering step-scheme–based heterojunction using lead-free Cs3Bi2Br9 perovskite–modified In4SnS8 for selective photocatalytic CO2 reduction to CO”, Appl. Catal. B 313, 121426 (2022).
https://doi.org/10.1016/j.apcatb.2022.121426
[14]. Q.M. Sun, J.J. Xu, F.F. Tao, W. Ye, C. Zhou, J.H. He, J.M. Lu, “Boosted Inner Surface Charge Transfer in Perovskite Nanodots@Mesoporous Titania Frameworks for Efficient and Selective Photocatalytic CO2 Reduction to Methane”, Angew. Chem. 134, e202200872 (2022).
https://doi.org/10.1002/ange.202200872
[15]. D. Li, Z. Xing, X. Meng, X. Hu, T. Hu, Y. Chen, “Spontaneous Internal Encapsulation via Dual Interfacial Perovskite Heterojunction Enables Highly Efficient and Stable Perovskite Solar Cells”, Nano Lett. 23, 3484 (2023).
https://doi.org/10.1021/acs.nanolett.3c00486
[16]. R. Dash, C. Mahender, P.K. Sahoo, A. Soam, “Preparation of ZnO layer for solar cell application”, Mater. Today 41, 161 (2021).
https://doi.org/10.1016/j.matpr.2020.08.448
[17]. A.E. Nogueira, G.T.S.T. da Silva, J.A. Oliveira, J.A. Torres, M.G.S. da Silva, M. Carmo, C. Ribeiro, “Unveiling CuO role in CO2 photoreduction process – Catalyst or reactant?”, Catal. Commun. 137, 105929 (2020).
https://doi.org/10.1016/j.catcom.2020.105929
[18]. E. Luévano-Hipólito, L.M. Torres-Martínez, “Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation”, Mat. Sci. Eng. B 226, 223 (2017).
https://doi.org/10.1016/j.mseb.2017.09.023
[19]. M.R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito, L.M. Torres-Martínez, “ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production”, Int. J. Hydrogen Energy 43, 10301 (2018).
https://doi.org/10.1016/j.ijhydene.2018.04.054
[20]. M.R. Alfaro Cruz, D. Sanchez-Martinez, L.M. Torres-Martínez, “CuO thin films deposited by DC sputtering and their photocatalytic performance under simulated sunlight”, Mat. Res. Bull 122, 110678 (2020).
https://doi.org/10.1016/j.materresbull.2019.110678
[21]. M.R. Alfaro Cruz, D. Sanchez-Martinez, L.M. Torres-Martínez, “Optical properties of TiO2 thin films deposited by DC sputtering and their photocatalytic performance in photoinduced process”, Int. J. Hydrogen Energy 44, 20017 (2019).
https://doi.org/10.1016/j.ijhydene.2019.06.043
[22]. J.R. Castillo-Saenz, N. Nedev, B. Valdez-Salas, M.A. Martinez-Puente, F.S. Aguirre-Tostado, M.I. Mendivil-Palma, D. Mateos, M.A. Curiel-Alvarez, O. Perez-Landeros, E. Martinez-Guerra, “Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants”, J. Mater. Sci.: Mater. Electron 32, 20274 (2021).
https://doi.org/10.1007/s10854-021-06533-x
[23]. M.A. Ávila-López, E. Luévano-Hipólito, L.M. Torres-Martínez, “CO2 adsorption and its visible-light-driven reduction using CuO synthesized by an eco-friendly sonochemical method”, J. Photochem. Photobiol. A 382, 111933 (2019).
https://doi.org/10.1016/j.jphotochem.2019.111933
[24]. W.N.R.W. Isahak, Z.A.C. Ramli, M.W. Ismail, K. Ismail, R.M. Yusop, M.W.M. Hisham, M.A. Yarmo, “CO2 utilization using metal oxide catalysts”, J. CO2 Util 2, 8 (2013).
https://doi.org/10.1016/j.jcou.2013.06.002
[25]. H. Liu, S. Bansal, “Metal halide perovskite nanostructures and quantum dots for photocatalytic CO2 reduction: prospects and challenges”, Mater. Today Energy 32, 101230 (2023).
https://doi.org/10.1016/j.mtener.2022.101230
[26]. Z. Dong, B. Li, Y. Zhu, W. Guo, “Metal halide perovskites for CO2 photoreduction: recent advances and future perspectives”, EES Catalysis 2, 448 (2024).
https://doi.org/10.1039/d3ey00187c
[27]. D. Liu, Y. Hu, E. Shoko, H. Yu, T.T. Isimjan, X. Yang, “High selectivity of CO2 conversion to formate by porous copper hollow fiber: Microstructure and pressure effects”, Electrochim. Acta 365, 137343 (2021).
https://doi.org/10.1016/j.electacta.2020.137343
[28]. S.A. Al-Tamreh, M.H. Ibrahim, M.H. El-Naas, J. Vaes, D. Pant, A. Benamor, A. Amhamed, “Electroreduction of Carbon Dioxide into Formate: A Comprehensive Review”, ChemElectroChem 8, 3207 (2021).
https://doi.org/10.1002/celc.202100438
[29]. L.J. Minggu, M.N.I. Salehmin, M.A. Mohamed, K. Arifin, R.M. Yunus, M.B. Kassim, “A low overpotential photoelectrochemical reduction of carbon dioxide to methanol with highly photoactive hierarchical structured cuprous oxide”, Ceram. Int 46, 26004 (2020).
https://doi.org/10.1016/j.ceramint.2020.07.091
[30]. E. Luévano-Hipólito, A. Aguirre-Astrain, L.M. Torres-Martínez, “Ink-jet printing of NaTaO3 films for photocatalytic H2O and CO2 conversion in seawater”, Mater. Sci. Semicond. Proc 185, 108984 (2025).
https://doi.org/10.1016/j.mssp.2024.108984
[31]. E. Luévano-Hipólito, M.G. Fabela-Cedillo, L.M. Torres-Martínez, “Novel lead-free halide perovskite KMgI3 for photocatalytic hydrogen evolution (HER) and carbon dioxide reduction reaction (CO2RR)”, Mat. Lett 361, 136066 (2024).
https://doi.org/10.1016/j.matlet.2024.136066
[32]. L.I. Ibarra-Rodriguez, M.R. Alfaro Cruz, L.F. Garay-Rodriguez, B.C. Hernandez-Majalca, J.L. Domínguez-Arvizu, A. López-Ortiz, L.M. Torres-Martínez, V.H. Collins-Martínez, “Photocatalytic reduction of CO2 over Ni-CuxO thin films towards formic acid production”, J. Mater. Res. Technol 26, 137 (2023).
https://doi.org/10.1016/j.jmrt.2023.07.118
[33]. E. Luévano-Hipólito, D.A. Torres-Alvarez, L.M. Torres-Martínez, “Flexible BiOI thin films photocatalysts toward renewable solar fuels production”, J. Environ. Chem. Eng 11, 109557 (2023).
https://doi.org/10.1016/j.jece.2023.109557
[34]. E. Luévano-Hipólito, L.M. Torres-Martínez, M.A. Ávila-López, “Visible-light-driven CO2 reduction and H2 evolution boosted by 1D Cu2O/CuO heterostructures”, J. Phys. Chem. Sol 170, 110924 (2022).
https://doi.org/10.1016/j.jpcs.2022.110924
[35]. Q. Zhu, Y. Cao, Y. Tao, T. Li, Y. Zhang, H. Shang, J. Song, G. Li, “CO2 reduction to formic acid via NH2-C@Cu2O photocatalyst in situ derived from amino modified Cu-MOF”, J. CO2 Util 54, 101781 (2021).
https://doi.org/10.1016/j.jcou.2021.101781
[36]. A. Kaliyaperumal, A.V. Gopala, G. Pandurangappa, B.R.K. Nanda, R. Chetty, A.K. Chandiran, “Photochemical CO2 Reduction Using a Lead-Free Cs2AgMCl6 (M= Bi, In, and Sb) Double Perovskite toward Selective Formic Acid Production”, ACS Appl. Mater. Interfaces 17, 13896 (2025).
Downloads
Published
Issue
Section
License
Copyright (c) 2026 The authors; licensee SMCTSM, Mexico.

This work is licensed under a Creative Commons Attribution 4.0 International License.
©2025 by the authors; licensee SMCTSM, Mexico. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).



