Development of a flexible and active substrate for SERS based on nanostructures of noble metals (Au and Ag)/polystyrene

Authors

  • Eduardo Carlos Martínez-Zuñiga Maestría en Ciencia de Materiales de la Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México, 50000, México.
  • Nayely Torres-Gómez Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIIDIT.UANL. Apodaca, Nuevo León, 66600, México
  • Marco Antonio Camacho-López Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Facultad de Química, Universidad Autónoma del Estado de México, San Cayetano de Morelos, Estado de México, 50200, México
  • Gustavo López-Téllez Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM (CCIQS), Universidad Autónoma del Estado de México, Unidad San Cayetano, Estado de México, 50200, México
  • Alfredo Rafael Vilchis-Nestor Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM (CCIQS), Universidad Autónoma del Estado de México

DOI:

https://doi.org/10.47566/2020_syv33_1-200601

Keywords:

SERS, noble metal nanoparticles, methylene blue, Citrus paradise, Cymbopogon citratus

Abstract

The need for fast and affordable portable detection systems, which are highly sensitive to organic molecules, has directed the development of devices based on SERS effect (Surface-Enhanced Raman Spectroscopy). In the present study, the green synthesis of Au nanoparticles assisted with Cymbopogon citratus and Citrus paradisi aqueous extract is reported, which are obtained with star-like and triangular shapes, respectively, as well as the chemical synthesis of cubic Ag nanoparticles. The nanostructures were characterized with UV-Vis spectroscopy and Transmission Electron Microscopy. The Ag and Au nanostructures were deposited on a ribbed polystyrene surface, to evaluate these arrays as active substrates for SERS using methylene blue as target molecule. An improvement in the characteristic Raman signals of methylene blue was observed in all cases, especially when Au nanostructures with star-like morphology are employed.

Author Biographies

  • Eduardo Carlos Martínez-Zuñiga, Maestría en Ciencia de Materiales de la Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México, 50000, México.

    Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM (CCIQS), Universidad Autónoma del Estado de México, Unidad San Cayetano, Estado de México, 50200, México

  • Alfredo Rafael Vilchis-Nestor, Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM (CCIQS), Universidad Autónoma del Estado de México
    Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM (CCIQS), Facultad de Química, Universidad Autónoma del Estado de México,

References

. S.H. Ko, Y. Choi, D.J. Hwang, C.P. Grigoropoulos, J. Chung, D. Poulikakos, Appl. Phys. Lett. 89, 141126 (2006). https://doi.org/10.1063/1.2360241

. D. Xia, Z. Ku, D. Li, S.R.J. Brueck, Chem. Mater, 20, 1847 (2008). https://doi.org/10.1021/cm702644c

. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun.7, 801 (1994). https://doi.org/10.1039/C39940000801

. M. Monge Oroz, An. R. Soc. Esp. Quim. 1, 33 (2009). https://dialnet.unirioja.es/servlet/articulo?codigo=2931286

. J.K. Gimzewski, C. Joachim, Science 283, 1683 (1999). https://doi.org/10.1126/science.283.5408.1683

. T. Klaus, R. Joerger, E. Olsson, C.G. Granqvist, Proc. Natl. Acad. Sci. U. S. A. 96, 13611 (1999). https://doi.org/10.1073/pnas.96.24.13611

. N. Durán, P.D. Marcato, O.L. Alves, G.I.H. De Souza, E. Esposito, J. Nanobiotechnology 3, 8 (2005). https://doi.org/10.1186/1477-3155-3-8

. V. Bansal, A. Bharde, R. Ramanathan, S.K. Bhargava, Adv. Colloid Interface Sci. 179, 150 (2012). https://doi.org/10.1016/j.cis.2012.06.013

. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Langmuir 19, 1357 (2003). https://doi.org/10.1021/la020835i

. V. Armendariz, I. Herrera, J.R. Peralta-Videa, M. Jose-Yacaman, H. Troiani, P. Santiago, J.L. Gardea-Torresdey, J. Nanoparticle Res. 6, 377 (2004). https://doi.org/10.1007/s11051-004-0741-4

. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interface Sci. 275, 496 (2004).

https://doi.org/10.1016/j.jcis.2004.03.003

. C. Noguez, I.L. Garzón, Chem. Soc. Rev. 38, 757 (2009). https://doi.org/10.1039/b800404h

. C. Noguez, J. Phys. Chem. C 11, 3806 (2007). https://doi.org/10.1021/jp066539m

. X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Electroanalysis 18, 319 (2006). https://doi.org/10.1002/elan.200503415

. J. Cao, T. Sun, K.T.V. Grattan, Sensor Actuat. B-Chem 195, 332 (2014). https://doi.org/10.1016/j.snb.2014.01.056

. Z.Q. Tian, B. Ren, D.Y. Wu, J. Phys. Chem. B 9463 (2002). https://doi.org/10.1021/jp0257449

. P. Vandenabeele, J. Jehli?ka, P. Vítek, H.G.M. Edwards, Planet. Space Sci. 62, 48. (2012). https://doi.org/10.1016/j.pss.2011.12.006

. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985). https://doi.org/10.1103/RevModPhys.57.783

. M. Meier, A. Wokaun, Opt. Lett. 8, 581 (1983). https://doi.org/10.1364/ol.8.000581

. A.N. Shipway, E. Katz, I. Willner, ChemPhysChem 1, 18 (2000). https://doi.org/10.1002/1439-7641(20000804)1:1<18::aid-cphc18>3.3.co;2-c

. N. Yang, T.T. You, Y.K. Gao, C.M. Zhang, P.G. Yin, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 202, 376 (2018). https://doi.org/10.1016/j.saa.2018.05.068

. E.M. Garcia-Castello, A.D. Rodriguez-Lopez, L. Mayor, R. Ballesteros, C. Conidi, A. Cassano, LWT - Food Sci. Technol. 62, 1114 (2015). https://doi.org/10.1016/j.lwt.2015.07.024

. S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Biotechnol. Prog. 22, 577. (2006). https://doi.org/10.1021/bp0501423

. S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang, Green Chem. 9, 852 (2007). https://doi.org/10.1039/b615357g

. N.E. Tajidin, S.H. Ahmad, A.B. Rosenani, H. Azimah, M. Munirah, Afr. J. Biotechnol. 11, 2685 (2012). https://academicjournals.org/journal/AJB/article-abstract/1DC5A8E32042

. K. Yoosaf, B.I. Ipe, C.H. Suresh, K.G. Thomas, J. Phys. Chem. C 111, 12839 (2007). https://doi.org/10.1021/jp073923q

. S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nat. Mater. 3, 482 (2004). https://doi.org/10.1038/nmat1152

. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Chem. Mater. 17, 566 (2005). https://doi.org/10.1021/cm048292g

. L.E. Silva-De Hoyos, V. Sánchez-Mendieta, M.A. Camacho-López, J. Trujillo-Reyes, A.R. Vilchis-Nestor, Arab. J. Chem. 13, 1975 (2018). https://doi.org/10.1016/j.arabjc.2018.02.016

. A. Singh, M. Chaudhari, M. Sastry, Nanotechnology 17, 2399 (2006). https://doi.org/10.1088/0957-4484/17/9/055

. A.S. De Silva Indrasekara, S.F. Johnson, R.A. Odion, T. Vo-Dinh, ACS Omega 3, 2202 (2018). https://doi.org/10.1021/acsomega.7b01700

. M.M. Phiri, D.W. Mulder, B.C. Vorster, R. Soc. Open Sci. 6, 181971 (2019). https://doi.org/10.1098/rsos.181971

. C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Anal. Chem. 77, 3261 (2005). https://doi.org/10.1021/ac048176x

. E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoint, J. Phys. Chem. C 11, 13794 (2007). https://doi.org/10.1021/jp0687908

Methylene blue SERS spectra with various amounts of the different nanoparticles.

Downloads

Published

2020-06-27

Issue

Section

Research Papers

How to Cite

Development of a flexible and active substrate for SERS based on nanostructures of noble metals (Au and Ag)/polystyrene. (2020). Superficies Y Vacío, 33, 200601. https://doi.org/10.47566/2020_syv33_1-200601