Modelling of GaAsP/InGaAs/GaAs strain-balanced multiple-quantum well solar cells
PDF

Keywords

Quantum well
Strain in solids
Solar cell
Conversion efficiency
Modelling

How to Cite

Cabrera, C. I., Rimada, J. C., Hernández, L., & Contreras Solorio, D. A. (2012). Modelling of GaAsP/InGaAs/GaAs strain-balanced multiple-quantum well solar cells. Superficies Y Vacío, 25(4), 234-239. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/195

Abstract

A design of de GaAsP/InGaAs/GaAs solar cell is presented that allows to model high efficiency devices.  The stress, tensile and compressive, are considered in order to compute the electron and hole dispersion relation E(k) in conduction and valence band.  Similarly, the optical transitions in quantum well and barriers were evaluated to calculate the quantum internal efficiency and the photocurrent. GaAsP/InGaAs/GaAs solar cell is optimized to reach the maximum performance by means of J-V relation. Our model was used to determine the highest efficiencies for cells containing quantum wells under varying degrees of strain, showing that cells with strained quantum wells achieve high efficiencies.

PDF

References

K. W. J. Barnham and C. J. Duggan, J. Appl. Phys. 67 3490 (1990).

P. R. Griffin, J. Barnes, K. W. J. Barnham, G. Haarpaintner, M. Mazzer and C. Zanotti-Fregonara, E. Grünbaum, C. Olson and C. Rohr, J. P. R. David, J. S. Roberts, R. Grey, and M. A. Pate, J. Appl. Phys. 80, 10 (1996).

N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, M. Mazzer. Appl. Phys. Lett. 75 495 (1999).

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill and C. Calder, Thin Solid Films 511, 76 (2006).

J. G. J. Adams, W. Elder, P. Stavrinou, K. W. J. Barnham. 24th European Photovoltaic Solar Energy Conference, September 21-25, 2009, Hamburg, Germany.

D. C. Johnson, I. Ballard, K. W. J. Barnham, M. Mazzer, T. N. D. Tibbits, J. Roberts, G. Hill, and C. Calder. 4th World Conference on Photovoltaic Energy Conversion, pages 26-31, 2006.

N. J. Ekins-Daukes, J. M. Barnes, K.W. J. Barnham, J. P. Connolly, M. Mazzer, J. C. Clark, R. Grey, G. Hill, M. A. Pate, J. S. Roberts, Sol. Energ. Mat. Sol. C., 68, 71 (2001).

D. C. Johnson, I. M. Ballard, K.W. J. Barnham, J. P. Connolly, M. Mazzer, A. Bessière, C. Calder, G. Hill and J. S. Roberts, Appl. Phys. Lett, 90, 213505 (2007).

B. C. Browne, A. Ioannides, J. P. Connolly, K. W. J. Barnham, J. S. Roberts, R. Airey, G. Hill, G. Smekens and J. V. Begin, Proceedings 33rd IEEE Photovoltaic Specialists Conference (2008), p. 144.

P. Kailuweit, R. Kellenbenz, S. P. Philipps, W. Guter, A. W. Bett and F. Dimroth, J. Appl. Phys. 107, 064317 (2010).

J. C. Rimada, L. Hernandez, K.W. J. Barnham and J. P. Connolly, Phys. Status Solidi B., 242, 1842 (2005).

N. G. J. Anderson. J. Appl. Phys. 78, 1850 (1995).

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, Paris, 1988).

H. Mathieu, P. Lefebre, and P. Christol, Phys. Rev. B, 46 4092 (1992).

ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 oC Tilted Surface, ASTM International. For referenced ASTM standards, visit the ASTM website hwww.astm.orgi, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standards Document Summary page on the ASTM website.

A. Khan, in: Low Dimensional Semiconductor Structures. Eds. K. Barnham and D. Vvedensky, (Cambridge, 2001) pp. 280-286.

S. Chuang, Phys. Rev. B, 43, 9649 (1991).

J. Piprek, Semiconductor Optoelectronic Devices, (Academic Press, 2003) pp. 27-30.