Defects in periodic refractive index structures with omnidirectional gap
PDF (Español (España))

Keywords

Optical properties
Metamaterials
Photonic structures
Superlattices. Propiedades ópticas
Metamateriales
Estructuras fotónicas
Superredes.

How to Cite

Pérez Rodríguez, J., & Palomino Ovando, M. (2012). Defects in periodic refractive index structures with omnidirectional gap. Superficies Y Vacío, 25(4), 218-222. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/191

Abstract

We analyze tunneling modes generated by the introduction of an impurity in a one-dimensional photonic crystal, which is constructed from alternating layers of dielectric and metamaterial. In this work the impurity is generated by changing the refractive index or width the dielectric of the central layer the photonic crystal. It is noted that the tunneling modes which are within the gaps, exhibit an omnidirectional behavior when the condition . This condition causes tunneling modes is insensitivity to the type of polarization, incidence angle, scaling of the unit cell. Given the variation of the refractive index of the impurity tunneling modes are generated in any of the gaps. But when you vary the thickness of the impurity are changes in modes of tunneling in both gaps.
PDF (Español (España))

References

E. Yablonovith, Phys. Rev. Let. 58, 2059 (1987).

S. John, Phys. Rev. Lett. 58, 2486 (1987).

J. Manzanares-Martínez, F. Ramos-Mendieta, P. Halevi, Phys. Rev. B 72, 035336 (2005).

A. Maurel, A. Ourir, J Mercier, V. Pagneux, Phys. Rev B 85 205138 (2012).

T. Stauber, G. Gómez-Santos, Phys. Rev. B 85, 075410 (2012).

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

J.B. Pendry, Phys. Rev. Lett., 85, No. 18, 3966, (2000). John B. Pendry David Smith, Physics Today, 37, (2004).

Fang, Yuntuan y He, Sailing, Phys. Rev. A, 78. 023813, (2008).

Jiang, Haitao, Appl. Phys. Lett., 83, 5386, (2003).

Dios-Leyva, M. de y González-Vázquez, Phys. Rev. B, 77, 125102, (2008).

Xiang, Yuanjiang, Phys. Rev. E, 76. 056604, (2007).

Abdulhalim, Opt. Commun, 215, 225, (2003).

S. K. Srivastava, S. P. Ojha, PIER 74, 181-194, (2007).

Xu, Kun-Yuan, Phys. Rev. E, 71, 066604, (2005).

Makasyuk, Igor y Chen, Zhigang, Phys. Rev. Lett.,96. 223903, (2006).

Sadeghi, S. M. y Li, W. Phys. Rev. B, 72, 165341, (2005).

Entezar, S. Roshan y Namdar, A. Phys. Rev. A, 80. 013814, (2009).

H. Kinto-Ramírez, M. A. Palomino-Ovando and F. Ramos-Mendieta, PIER B 35, 133 (2011).

Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett., 76, 4773, (1996).

Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys. Condens. Matter 10, 4785, (1998).

Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech., 47, 2075, (1999).

Gupta, S. D., Arun, R., Agarwal, G. S., Phys. Rev. B, 69, 113104, (2004).

Shelby, R.A., D. R. Smith, S. C. Nemat-Nasser, S. Schultz, Appl. Phys. Lett., 78, 489, (2001).

Caloz, Chistophe y Itoh, Tatsuo. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications; John Wiley & Sons Inc. (2006).