Abstract
Several mesoporous SBA-15 type supports were synthesized; some of them were modified with an auxiliary organic molecule (SBA-15/TMB). The catalysts were obtained by in-situ addition of Pd (0.5- 3.0 %wt) during supports synthesis. The materials were characterized by Nitrogen physisorption, XRD, SAXS, TPR and SEM. The catalytic activity was tested in the deoxygenation of stearic acid (SA) at 300°C and 20 bar, feeding 0.25 ml/min of SA (4 %wt) in dodecane, and 50 ml/min of H2 (10%volume) in N2. The synthesized solids showed characteristic properties of mesoporous materials, and the organic molecule had an effect of expansion and disordering of the structure of the material, generating increments of the textural properties, while Pd addition did not cause significant changes in the structural properties of these materials. The catalysts showed high initial conversions of SA (40-75%), decreasing to 20-40% after 6 h reaction. Higher content of Pd produced higher conversion of SA and lower catalyst deactivation. Catalysts with TMB were less active. Selectivity to non-oxygenated products was 100% with n-heptadecane as the main product.
References
.D. Kubička, L. Kaluža, Appl. Catal. A 372, 199 (2010).
.E. Santillan and M. Crocker, J. Chem Technol Biotechnol 87,1041 (2012).
.M. Snåre, I. Kubičková, P. Mäki, D. Chichova, K. Eränen,D.Y. Murzin, Fuel 87, 933 (2008).
.P. Priecel, L. Čapek, D. Kubička, F. Homola, P. Ryšánek, M.Pouzar, Catalysis Today 176, 409 (2011).
.T. Morgan, E. Santillan-Jimenez, A.E. Harman-Ware, Y. Ji, D. Grubb, M. Crocker, Chemical Engineering Journal 189, 346 (2012).
.D. Kubička, J. Horáček, M. Setnička, R. Bulánek, A. Zukal, I. Kubičková, Appl. Catal. B: Environmental 145, 101 (2014).
.S. Lestari, P. Mäki-Arvela, H. Bernas, O. Simakova, R. Sjöholm, J. Beltramini, G.Q. Max Lu, J. Myllyoja, I. Simakova and D.Y. Murzin, Energy & Fuels 23, 3842 (2009).
.J.G. Immer, M.J. Kelly, H.H. Lamb, Applied Catalysis A: General 375, 134 (2010).
.I. Simakova, B. Rozmysłowicz, O. Simakova, P. Mäki- Arvela, A. Simakov, D.Y. Murzin, Topics in Catalysis 54, 460 (2011).
. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998).
. H. Wang, C. Liu, Applied Catalysis B: Environmental 106, 672 (2011).
. B. Sun, L, Li, Z. Fei, S. Gu, P. Lu, W. Ji, Microporous and Mesoporous Materials 186, 14 (2014).
. P. Kaminski, M. Ziolek, Journal of Catalysis 312, 249 (2014).
. S. Lestari, P. Mäki, K. Eränen, J. Beltramini, G.Q. Max, D.Y. Murzin, Catalysis Letters 134, 250 (2010).
. L. Fei, H. K. Reddy, J. Hill, Q. Lin, B. Yuan, Y. Xu, P. Dailey, S. Deng, H. Luo, J. Nanotechnology 2012, 1 (2012).
. K. Flodström, V. Alfredsson, Microporous and Mesoporous Materials 59, 167 (2003).
. G.D. Stucky, B.F. Chmelka, D. Zhao, Q. Huo, J. Feng, P. Yang, D. Pine, D. Margolese, W.W. Lukens, G.H. Fredrickson, P. Schmidt, Block polymer processing for mesostructured inorganic oxide materials, U. S. Patent No. 7, 665 (2010).
. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catalysis Today 41, 207 (1998).
. M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater. 12, 1961 (2000).
. M. Mesa, L. Sierra, J. L. Guth, Microporous and Mesoporous Materials 112, 338 (2008).
. L. Chen, Y. Meng Wang, Ming-Yuan He, J. Porous Mater 18, 211 (2011).
. J. Liu, C. Li, Q. Yang, J. Yang, C. Li, Langmuir 23, 7255 (2007).
. H. Zhang, J. Sun, D. Ma, X. Bao, A.K. Hoffmann, G. Weinberg, D. Su, R. Schlögl. J. Am. Chem. Soc. 126, 7440 (2004).