The modified Becke-Johnson potential analyzed


mBJLDA potential
Band gap
Wien2k 2011.

How to Cite

Camargo Martínez, J. A., & Baquero, R. (2013). The modified Becke-Johnson potential analyzed. Superficies Y Vacío, 26(2), 54-57. Retrieved from


Recently in the Wien2k code, the modifi ed Becke-Johnson potential (mBJLDA) was implemented. As the authors [Phys.Rev.Lett. 102, 226401 (2009)] point, this potential reproduces the band gap of semiconductors with improved accuracy. In this paper we present our analysis of this potential in two directions. First, we checked whether this potential reproduces the band structure for metals, an analysis that lacked in the literature. We calculated the band gap of a group of semiconductors. We observed that the Linear Density Approximation (LDA) give rise to a shorter lattice constant as compared to experiment. The Generalized Gradient Approximation behaves oppositely. Using the average, aAvg, in the mBJLDA potential, we obtained a closer to experiment value for the gap. We conclude that the new mBJLDA potential represent an important improvement as compared to the results from the previous version of the Wien2k code. Also the mBJLDA potential can be a very useful tool for the theoretical study of complex systems containing semiconductor compounds such as surfaces, superlattices and interfaces.


. A. E. Garcia, J. Camas. S. Mendoza, R. Baquero-Salaguarda, L. M. Garcia-Cruz, R. Baquero, The Icfa J. Phys. I, No 4, (2008).

. F. Tran, P. Blaha, Phys. Rev. Lett., 102, 226401, (2009).

. J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, J. Chem. Phys., 123, 174101, (2005).

. P. Hohenberg, W. Khon, Phys. Rev., B 136, 13864, (1964).

. W. Khon, L.J. Sham, Phys. Rev., 140, A1133, (1965).

. J.P. Perdew, Y. Wang, Phys. Rev., B 45, 13244, (1992).

. J.P. Perdew, S. Kurth, J. Zupan, P. Blaha, Phys. Rev. Lett. 82, 2544, (2000).

. A.D. Becke, E.R. Johnson, J. Chem., 124, 221101, (2006).

. A. D. Becke, M.R. Roussel, Phys. Rev., A 39, 3761, (1989).

. P. Blaha, K. Schwars, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K:Full Potential Linearized Augmented Plane aves and Local Orbital Programs for Calculating Crystal Properties, edited by K. Schwars, Vienna University of Technology, Austria, (2001).

. K. Wang, R.R. Reeber, Mat. Sci. Eng., R23, 101, (1998).

. B. Koslowski, C. Dietrich, P. Ziemenn, Se. Sci, 557, 225, (2004).

. A.R. Jani, N.E. Brener, J. Calaway, Phys. Rev., B 38, 9425, (1988).

. O. Madelung, Data in Sciene and Technology, Landolt-Borstain, Group III: Crystal and Solid StatePhysics, Vol 13 Metals; Phonon States, Electron States and Fermi Surfaces, Subvolume C. Ed. Springer-Verlag, (1984).

. D. Papaconstantopoulos, J. Anderson, J. McCaffrey, Phys. Rev., B 5, 1214, (1972).

. I. Petroff, C. R. Viswanathan, Phys. Rev., B 4, 799, (1971).

. S. Ada Chi, Handbook on Physical Properties of Semiconductors, Vols. I, II, III. Kluwer Academic Publishers, (2004).

. L. C. O. Dacal and A. Cantarero, Solid State Comm., 151, 781, (2011).

. Preliminary calculations with Wien 2011 seem, nevertheless, to confirm the result obtained previously.