Abstract
SnO2 thin films were deposited on glass substrates by intermittent spray pyrolysis technique, using solution of SnCl45H2O in methanol. Thin films obtained were characterized by X-Ray Diffraction (XRD), UV-VIS spectroscopy, Scanning Electron Microscopy (SEM) and resistivity measurements by Van der Pauw method. According to results, high transmittance in visible light spectrum, cassiterite phase of SnO2 and uniformity of the film across the substrate were determined. Optical, electrical and structural features obtained in material synthesis are appropriate for electrodes in Grätzel solar cells such as high transmittance (>80%), low resistivity (9.28 x 10-03 ?.cm) and high density of carriers (6.24 x 1019 cm-3). Thickness of the film was determined based on transmittance spectra and the crystallite size from XRD diffractogram by Scherrer’s equation.References
. L. D. Khanh, N. T. Binh, L. T. T. Binh, N. N. Long, D. H. Chi, K. Higashimine, T. Mitani, Journal of the Korean Physical Society, 52, 1689, (2008).
. M. A. Ponce, M. S. Castro, O. J. Moncada, M. D. Echeverría, C. M. Aldao, Materials Research, 6, 515, (2003).
. M. de la L. Olvera, A. Maldonado, R. Asomoza, Superfi - cies y vacío, 8, 33, (1999).
. M. Chacón, I. Abrego, A. Watson, E. Ching, Revista CIATEC – UPF, 1, 59, (2009).
. C. E. Ararat-Ibarguen, A. Montenegro, J. E. Rodríguez-Paez, J. Urresta, Quím. Nova, 30, 1578, (2007).
. Ç. Kiliç, A. Zunger, Phys. Rev. Lett, 88, 095501, (2002).
. N. Jebbari, N. Kamoun Turki and R. Bennaceur, International Renewable Energy Congress, 276, (2010).
. J. Tanaka, S. L. Suib, J. Chem. Educ., 61, 1104, (1984).
. G. Smestad, M. Grätzel, J. Chem. Educ., 75, 752, (1998).
. M. R. Narayan, Renewable and Sustainable Energy Reviews, 16, 208, (2012).
. L. L. Tobin, T. O’Reilly, D. Zerulla, J. T. Sheridan, Journal for Light and Electron Optics, 122, 1225, (2011).
. F. G. Mesa Rodríguez, C. A. Arredondo Orozco, AVANCES Investigación en Ingeniería, 13, 15, (2010).
. W. J. Jeong, S. K. Kim, G. C. Park, Thin Solid Films, 506, 180, (2006).
. G. Korotcenkov, V. Brinzari, J. Schwank, M. DiBattista, A. Vasiliev, Sensors and Actuators B: Chemical, 77, 244, (2001).
. W. J. Lee, E. Ramasamy, D. Y. Lee, Solar Energy Materials & Solar Cells 93, 1448, (2009).
. K. Wongcharee, V. Meeyoo, S. Chavadej, Solar Energy Materials & Solar Cells 91, 566, (2007).
.. M. Quintana, T. Marinado, K. Nonomura, G. Boschloo, A. Hagfeldt, Jornal of Photochemistry and Photobiology A: hemistry, 202, 159, (2009).
.. S. Ito, I.M. Dharmadasa, G.J. Tolan, J.S. Roberts, G. Hill, H. Miura, J.-H. Yum, P. Pechy, P. Liska, P. Comte, M. Grätzel, Solar Energy, 85, 1220, (2011).
. D. Martínez Hernández, C. Córdoba, J. Mera, O. Paredes, Revista Colombiana de Física, 42, 208, (2010).
. G. Gordillo, C. Calderón, F. Rojas, Revista Mexicana de Física, 49, 329, (2003).
. Joint Committee on Powder Diffraction Standards, Powder Diffraction File No. JCPDS-72-1147 (ICSD data).
. V. A. Drits, J. Srodon, D. D. Eberl, Clays and Clay Minerals, 45, 461, (1997).
. E. F. Kaelble (Ed.), Handbook of X-ray, McGraw-Hill, N.Y., (1967).
. J. Pérez-Alvarez, L. Escobar-Alarcón, E. Camps, S. Romero, S. M. Fernández-Valverde, J. Jiménez-Becerril, Superfi cies y vacío, 20, 26, (2007).
. S. Majumder, Materials Science-Poland, 27, 123, (2009).
.. H. Seo, M. K. Son, J. K. Kim, I. Shin, K. Prabakar, H. J. Kim, Solar Energy Materials & Solar Cells 95, 340, (2011).
. T. Gui, L. Hao, J. Wang, L. Yuan, W. Jia, X. Dong, Chin. Opt. Lett., 8, 134, (2010).
. J. P. Carmo, R. P. Rocha, A. F. Silva, L. M. Gonçalves, J. H. Correia, Proc. Materiais 2009, 1, (2009).