Contribution from f orbitals to the Density of States of NdBa2Cu3O7 and SmBa2Cu3O7 superconductors
PDF (Español (España))

Keywords

High Tc superconductivity
Density of electronic states
Re123 family
CuO planes
f-orbitals. Superconductores de alta Tc
Densidad de estados electrónicos
Familia Re123
Planos de CuO
Orbitales f.

How to Cite

Puch Ceballos, F., Aguilar Sánchez, J., & Tototzintle Huitle, H. (2013). Contribution from f orbitals to the Density of States of NdBa2Cu3O7 and SmBa2Cu3O7 superconductors. Superficies Y Vacío, 26(3), 84-89. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/159

Abstract

This paper presents a calculation of the density of electronic states (DEE) of high critical temperature superconductors, NdBa2Cu3O7, SmBa2Cu3O7and and YBa2Cu3O7. The aim is to determine the effect of f orbitals of Sm and Nd atoms in total DEE, and partial ones. Calculations were performed with ab initio LAPW+lo method. The total DEE of the three systems are qualitatively similar, except for the region above the Fermi energy (Ef), which shows the contribution of forbitals of the rare earths. These contributions modify the partial DEE of CuO planes differently: for Nd123 there is a decrease in the contribution of the DEE, for an increase Sm123.
PDF (Español (España))

References

K. H. Bennemann, J. B. Ketterson, Superconductivity: Volume 1: Conventional and Unconventional Superconductors, Volume 2: Novel Superconductors, 1ra ed. (Espriger-Verlag, Berlin Heidelberg, 2008).

P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev. B 46, 14803 (1992).

S. Chakravarthy, A. Sudbø, P. W. Anderson, S. Strong, Science 261, 337 (1993).

A. Lanzara et al, Nature 412, 510 (2001).

M. Luszczek, and R. Laskowski, phys. Estat. Sol. (b) 230, R1 (2002).

M. Łuszczek, Physica C 471, 29 (2011).

S. Y. Xiong, Y. G. Zhao, D. J. Dong, S. Q. Guo, P. C. Song, L. W. Zhang, M. H. Zhu, B. S. Cao, y B. L. Gu, Physica C 282- 287, 783 (1997).

M. Łuszczek y R. Laskowski, Phys. Stat. Sol. (b) 239, 261 (2003).

J. Marcus et al, J. Phys. France 49, 111 (1988).

W. Schindler, P. van Hasselt, P. Tontsch, J. Markl, J. Burger, P. Bauer, G. Saemann-Ischenko, J. of Crys. Grow. 127, 1088 (1993).

S-I Yoo, M. Murakami, N. Sakai, T. Higuchi, S.Tanaka, Japanese J. of Appl. Phys. 33, L1000 (1994).

S. I. Yoo, N. Sakai, H. Takaichi, T. Higuchi, and M. Murakami Appl. Phys. Lett. 65, 633 (1994).

A. Oka, S. Koyama, T. Izumi, Y. Shiohara, Physica C 314, 269 (1999).

M. R. Koblischka, A. J. J. van Dalen, T. Higuchi, S. I. Yoo, and M. Murakami, Phys. Rev. B 58, 2863 (1998).

A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan. Physica C 469, 2012 (2009).

A. Tavana and M. Akhavan. Eur. Phys. J. B 73, 79 (2010).

U. topal, M. Akdogan, J. Supercond. Nov. Magn. 25, 239 (2012).

C. Guanghan, Q. Yitai, L. Xianming, Z. Yuheng, J. Zhengkuan, Z. Qirui, Physica C 282, 973 (1997).

J. Röhlera, S. Linka, K. Conderb, E. Kaldisb, J. of Phys. and Chem. of Sol. 59, 1925 (1998).

W. A. Atkinson and J. P. Carbotte. Phys. Rev. B 51, 1161 (1995).

L. Soderholm et al, Nature 328, 604 (1987). [22] Z. Zou, K. Oka, T. Ito, Y. Nishihara, Jpn. J. Appl. Phys. Part 2 36, L18 (1997).

P. Blaha, K. Schwarz, P. Soratin, B. Trickey. Comput. Phys. Commun. 59, 399 (1990).

J. P. Perdew, S. Burke, M. Ernzerhof. Phys.Rev.Let. 77, 386 (1996).

V.I. Anisimov, J. Zaanen y O.K. Andersen, Phys. Rev. B 44, 943(1991); V.I. Anisimov et al., Phys. Rev. B 48, 16929 (1993); V.I. Anisimov et al., J. Phys.: Condens. Matter 9, 767 (1997).

W. E. Picket. Rev. Mod. Phys. 61, 433 (1989).

G. Y. Guo, and W. M. Temmerman. Phys. Rev. B 41, 6372 (1990).

M. Li. International J. of Quan. Chem. 48, 49 (1993).

D.J. Singh. Phys. Rev. B 50, 4106 (1994).

J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Phys. Rev. 106, 162 (1957).

A. M. Cucolo, C. Noce, A. Romano. Phys. Rev. B 53, 6764 (1996).

F. Puch, R. Baquero. Rev. Mex. Fis. 52, 301 (2006).