Effects of temperature and deposition time on the RF- sputtered CdTe films preparation

Authors

  • E. Camacho Espinosa Centro de Investigación en Dispositivos Semiconductores, BUAP
  • E. Rosendo Centro de Investigación en Dispositivos Semiconductores, BUAP
  • T. Díaz Centro de Investigación en Dispositivos Semiconductores, BUAP
  • A. I. Oliva Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida. Depto. Física Aplicada
  • V. Rejon Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida. Depto. Física Aplicada
  • J. L. Peña Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida. Depto. Física Aplicada

Keywords:

Magnetron sputtering, CdTe, Substrate temperature, Thin films

Abstract

In this work, CdTe thin films were deposited by rf-sputtering at different substrate temperatures (room temperature (RT), 100, 150, 200, and 250 °C) and deposition times (30, 60, and 90 min). The applied power and vacuum pressure were maintained fixed for all depositions. A mean value of 18.5 nm/s on the deposition rate was maintained for films deposition. The surface morphology, rms-roughness, and grain size of the sputtered-films were obtained from atomic force microscopy and scanning electron microscopy images for comparison. CdTe films deposited during 60 min presented high reproducibility, because their consistent thickness value (1.2 ?m) at different substrate temperatures. Higher thickness than 1.81 ?m was obtained for films deposited at 250 °C and 90 min. CdTe films deposited at 150 °C present minor dispersion on thickness, while rms-roughness increased with the increase of substrate temperature but only for films deposited at 60 and 90 min. CdTe film deposited at 250 °C during 90 min was selected as appropriate for CdS/CdTe solar cells preparation.

References

A. Jäger- Waldau, Solar Energy 77, 667 (2004).

S. Sze, Physics of Semiconductor Devices, 2nd ed. ( U.S.A., New York, 1981).

I. Repins, M.A. Contreras, B. Egaas, C. De Hart, J. Schart, C.I. Perkins, B. To, R. Noufi. Prog. Photovoltaics Res. Appl. 16, 230 (2008).

N.R. Paudel , A.D. Compaan,Y. Yan, Solar Energy Materials & Solar Cells, 113, 26 (2013).

M. R. Begam, N. M. Rao, S. Kaleemulla, M. Shobana, N. S. Krishna, M. Kuppan, Journal of Nano- and Electronic Physics 5, 3019 (2013).

P. Hu, B. Li, L. Feng, J. Wu, H. Jiang, H. Yang, X. Xiao, Surface & Coatings Technology 213, 84 (2012).

K. Wasa, Handbook of Sputter Deposition Technology, S. Hayakawa (U.S.A., Westwood, New Jersey, 1992).

K. Durose, D. Boyle, A. Abken, C. J. Ottley, P. Nollet, S. Degrave, M. Burgelman, R. Wendt, J. Beier, and D. Bonnet, 229, 1055 (2002).

W. T. Pawlewicz, R. P. Allen, H. G. Barrus, N. Laegreid, Revue de Physique Appliquée, 12, 417 (1977)

A. Abbas, J. W. Bowers, B. Maniscalco, S. Moh, G. D West, P. N. Rowley, H. M Upadhyaya and J. M. Walls, Mater. Res. Soc. Symp. Proc. 1323, 145 (2011).

R. Wendt, A. Fischer, D. Grecu, and A. D. Compaan, J. Appl. Phys. 84, 2920 (1998).

J. Li, J. Chen, N. J. Podraza and R. W. Collins, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, Waikoloa, HI. 1 392, (2006).

R. Messier, A. P. Giri, and R. A. Roy, Journal of Vacuum Science and Technology A 2, 500 (1984).

Downloads

Published

2014-03-15

Issue

Section

Research Papers

How to Cite

Effects of temperature and deposition time on the RF- sputtered CdTe films preparation. (2014). Superficies Y Vacío, 27(1), 15-19. https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/148