Growth of TiO2 films by pulsed electrodeposition: Influence from frequency of voltage pulses
PDF (Español (España))

Keywords

Thin films
electrodeposition
TiO2. Películas delgadas
electrodepósito
TiO2.

How to Cite

Castillo Ballesteros, A., Zapata Torres, M., Zapata Navarro, A., Fernández Muñoz, J. L., Guillén Rodríguez, J., Valaguez Velazquez, E., & Melendez Lira, M. (2015). Growth of TiO2 films by pulsed electrodeposition: Influence from frequency of voltage pulses. Superficies Y Vacío, 28(4), 119-123. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/116

Abstract

TiO2 films were grown by pulsed electrodeposition on stainless steel substrates, and they were studied the influence of the frequency of the voltage pulse on the amount of mass deposited and the morphology of the samples. The electrolytic cell was added with a system of agitation with a motor of micro sonic vibrations for the elimination of hydrogen bubbles produced during the growth. The voltage pulses were of - 2500 mV in the cathodic zone and -500 mV in the anodic zone; the frequency of the pulses was between 0 and 1 Hz. After their growth the films were dehydrated at 120°C by one hour; and annealed at 450 °C by 2 hours. The structural and morphologic properties were studied by means of X ray Diffraction and Scanning Electron Microscopy. The results show that the agitation of the solution helps stabilizing/maintaining the current during the growth. The films had an amorphous structure after the dehydration, acquiring the anatasa crystalline structure after thermal annealing. The deposited mass and the morphology depend on the frequency of the applied voltage pulses during the growth.
PDF (Español (España))

References

. A. Mills, H.R. Davies, D. Worsley, Chem. Soc. Rev. 22, 417 (1993).

. B. O´Regan, M. Grätzel, Nature 353, 737 (1991).

. G. Sheveglieri (Ed.) Gas sensors, Kluwer Academy Publishers Dordrecht (1992)

. T. Poulios, P. Spathis, P.T soumparis, J. Environ. Sci. Health 34, 1455 (1999).

. C. Euvananont, C. Junin, K. Impur, P. Limthongkul, C. Thanachayanont, Ceramics International 34, 1067 (2008).

. P. Kern, P. Schwaller , Thin Solid Films 494, 279 (2006).

. D. Guerin, S. Ismat Shah, J. Vac. Technol. A 15, 712 (1997).

. M. Ghanashyn, K. Narisimha Rao, S. Mohan, J. Appl. Phys 73, 434 (1993).

. S. Mayaki, T. Kobashy, M. Satou, F. Fijimoto, J. Vac. Sci. Technol. A 9, 3036 (1991).

. S. Zhang, Y.F. Shu, D.Z. Brodic, Thin Solid Films 223, 265 (1993).

. S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiera, H. Minoura, Solid State Ionics 151, 19 (2002).

. L. Kavan, T. Soto, M. Grätzel, D. Fitzmaurice, V. Shklover, J. Phys. Chem. 97, 9493 (1993).

. I. Zhitomirsky, L. Gal-Or, A. Kohn, J. Mater. Sci. 30, 5307 (1995).

. I. Zhitomirsky, L. Gal-Or, J. Eur. Ceram. Soc. 16, 819 (1996).

. N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, T. Pauporté, D. Lincot, Electrochem. Comm. 5, 220 (2003).

. S. Karuppuchamy, J.M. Jeong, Mater. Chem. Phys. 93, 251 (2005).

. I. Zhitomirsky, Nanostruct. Mater. 8, 521 (1997).

. B.H. Juárez, C. Lopez, C. Alonso, J. Phys. Chem. B 108, 16708 (2004).

. M.S. Chandrasekar, M. Pushpavanam, Electrochim. Acta 53, 3313 (2008).

. G. Schwarzenbach, J. Mϋlenbach, K. Mϋller, Inorg. Chem. 9, 2381 (1970).

. K. Karimi, F. Riffard, R. Rabaste, S. Pierrier, E. Cueff, C. Issartel, H. Busacail, Appl. Surf. Sci. 254, 2292 (2008).