Synthesis and characterization of mesoporous silicate modified with zirconium and sulfate
PDF (Español (España))


Mesoporous silicate
Dehydration. Silicato mesoporoso

How to Cite

Benito, H. E., García Alamilla, R., Hernández Enríquez, J. M., Sandoval Robles, G., & Paraguay Delgado, F. (2015). Synthesis and characterization of mesoporous silicate modified with zirconium and sulfate. Superficies Y Vacío, 28(3), 86-91. Retrieved from


Mesoporous silicate were synthesized by a not hydrothermal method and the acid sites were promote by adding zirconium and sulfate ions. The maximum acid strength of the mesoporous silicate was promoted by addition of zirconium during the synthesis process and sulfate ions was add by insipient impregnation, after the mesoporous silicate synthesis. The materials were characterized by TGA, XRD, FT-IR, BET, potentiometric titration with n-butylamine, SEM and TEM techniques. The catalytic activity of the materials was evaluated for the ethanol dehydratation. The zirconium atoms and sulfate ions incorporation had a favorable impact on the acid strength of sites going from -42 to 143 mV. The hexagonal arrangement mesoporous material is slightly affected, indicating that ZrO2 nano crystals are within the silicate matrix. At the same way affected the sulfate ions presence.
PDF (Español (España))


. Margandan Bhagiyalakshmi, Lee Ji Yun, Ramani Anuradha, Hyun Tae Jang, Journal of Hazardous Materials, 175, 928 (2010).

. Chang Lin Chen, Soofin Cheng, Hong-Ping Lin, She Tin Wong, Chung-Yuan Mou, Applied Catalysis A: General, 215, 21 (2001).

. CAO Yuan, WEI Hong juan, XIA Zhi ning, Transaction of Nonferrous Metals Society of China, 19, 659 (2009).

. Yuran Wang, Yajie Guo, Guangjian Wang, Yiwu Liu, Fei Wang, J Sol-Gel Sci Technol, 57, 185 (2011).

. T S Jiang, Y H Li, X P Zhou, Q Zhao, H B Yin, J. Chem. Sci., 122, 371 (2010).

. Dinh Quang Khieu, Duong Tuan Quang, Tran Dai Lam, Nguyen Huu Phu, Jae Hong Lee, Jong Seung Kim, J Incl Phenom Macrocycl Chem 65, 73 (2009).

. Shrikant S. Bhoware, A. P. Singh, Journal of Molecular Catalysis A: Chemical, 266, 118 (2007).

. Walaa Alharbi, Esther Brown, Elena F. Kozhevnikova, Ivan V. Kozhevnikov, Journal of Catalysis, 319, 174 (2014).

. Wimonrat Trakarnpruk, Mendeleev Commun., 23, 168 (2013).

. Hansheng Li, Shichao He, Ke Ma, Qin Wu, Qingze Jiao, Kening Sun, Applied Catalysis A: General, 450, 152 (2013).

. J. Bedia, J.M. Rosas, D. Vera, J. Rodríguez-Mirasol, T. Cordero, Catalysis Today, 158, 89 (2010).

. H. Sepehrian, A. R. Khanchi, M. K. Rofouei, S. Waqif Husain, Journal of the Chemical Society, 3, 253 (2006).

. Izabela Majchrzak-Kucęba, J Therm Anal Calorim, 107, 911 (2012).

. K.S. Hui, C.Y.H. Chao, Journal of Hazardous Materials, B137, 113, (2006).

. I. Jiménez Morales, J. Santamaría González, P. Maireles Torres, A. Jiménez López, Applied Catalysis B: Environmental, 103, 91 (2011).

. M. Ejtemaei, A. Tavakoli, N. Charchi, B. Bayati, A. A. Babaluo, Y. Bayat, Advanced Powder Technology, 25, 840 (2014).

. I. Jiménez Morales, M. A. del Río Tejero, P. Braos García, J. Santamaría González, Fuel Processing Technology, 97, 65 (2012).

. Guo Qiang, Wang Tao, Chinese Journal of Chemical Engineering, 22, 360 (2014).

. G. Leofanti, M. Pandovan, G. Tozzola, B. Venturelli, Catalysis Today, 41, 207 (1998).

. L. R. Pizzio, P. G. Vázquez, C. V. Cáceres, M. N. Blanco, Applied Catalysis A: General, 256, 125 (2003).

. Benjaram M. Reddy, Ataullah Khan, Catalysis Reviews, 47, 257 (2005).

. Abd El-Aziz A. Said, Mohamed M. Abd El-Wahab, Mohamed Abd El-Aal, Journal of Molecular Catalysis A: Chemical, 394, 40 (2014).