Thermoelectrical characterization and comparative analysis of three finite element models of a MEMS thermal sensor
PDF
LENS

Keywords

thermal sensor
thermopile
thermal resistance
thermoelectrical characterization
microcalorimeter
MEMS

How to Cite

Gómez Franco, M., Ramírez Treviño, A., Figueras, E., & Sauceda Carvajal, A. (2018). Thermoelectrical characterization and comparative analysis of three finite element models of a MEMS thermal sensor. Superficies Y Vacío, 31(2), 33-38. https://doi.org/10.47566/syv.v31i2.65

Abstract

This document presents the finite element modeling using ANSYS to obtain the thermal resistance of a MEMS thermal sensor. Additionally, the document describes a thermoelectrical characterization to find the sensor performance parameters. For modeling purposes, we divided the thermal sensor into four different thickness zones. We analyzed three different models, the first includes all materials layers, the second involves an equivalent thermal conductivity and an equivalent thickness for each zone, and the proposed model besides using an equivalent thermal conductivity by zone also considers the same thickness for all zones to reduce simulation time and to optimize thermal sensor design parameters. The first model evaluates three different boundary conditions, while the second and third models consider two different thermopile wide strips. The thermal resistance of the proposed model has a relative error of 11% in relation to the experimental value. The model, considering all layers and heat power applied to the surface as boundary conditions, has the lowest error (9%), while models considering the thermopile strips width have shown a higher error, 67%. As a result, the proposed model for heat transfer analysis simplifies complex geometries and reduces simulation time.

https://doi.org/10.47566/syv.v31i2.65
PDF
LENS

References

. P. Gill, T. Moghadam, B. Ranjbar, J. Biomol. Tech. 21, 167 (2010).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977967/

. L.D. Hansen, J. Rusell, T. Choma, Cell Biochem. Biophys. 49, 125 (2007).

https://www.ncbi.nlm.nih.gov/pubmed/17906367

. K.N. Marsh, J.B. Ott, C.J. Wormald, H. Yao, I. Hatta, P.M. Claudy, S. Van Herwaarden, in: Measurements of the Thermodynamic Properties of Single Phases, Eds. A.R.H. Goodwin, K.N. Marsh, W.A. Wakeham, (IUPAC, Elsevier, 2003) p. 368.

https://doi.org/10.1016/S1874-5644(03)80010-3

. M.K. Khaw, F. Mohd-Yasin, N.T. Nguyen, Microelect. Eng. 158, 107 (2016),

https://doi.org/10.1016/j.mee.2016.03.050

. L. Wang, D.M. Sipe, Y. Xu, Q. Lin, J. Microelectromech. S. 17, 318 (2008).

https://doi.org/10.1109/JMEMS.2008.916357

. B. Xie, K. Ramanathan, B. Danielsson, In: Thermal Biosensors, Bioactivity, Bioaffinitty, Eds. P.K. Bhatia et al. (Springer-Verlag Berlin Heidelberg, 1999) pp 1-33.

https://link.springer.com/chapter/10.1007%2F3-540-49811-7_1

. C.G. Velve, F. Bertholle, M. Le Berre, S. Meance, L. Malaquin, L., J. J. Greffet, Y. Chen, Microelectron. Eng. 85, 1367 (2008).

https://doi.org/10.1016/j.mee.2007.12.074

. Y. Zhang, S. Tadigadapa, Biosens. Bioelectron. 19, 1733 (2004).

https://doi.org/10.1016/j.bios.2004.01.009

. T. Adrega, A.W. van Herwaarden, Sens. Actuators, A 167, 354 (2011).

https://doi.org/10.1016/j.sna.2011.03.027

. C. Escriba, E. Campo, D. Estève, J.Y. Fourniols, Sens. Actuators, A 120, 267 (2005). https://doi.org/10.1016/j.sna.2004.11.027

. C.M. Johnston, B.P. Ruddy, P.M.F. Nielsen, A.J. Taberner, Am. J. Physiol. Heart. Circ. Physiol. 309, H318 (2015).

https://doi.org/10.1152/ajpheart.00194.2015

. T.P. Huynh, Y. Zhang, C. Yehuda, Sensors 15, 3351 (2015).

https://doi.org/10.3390/s150203351

. A.W. van Herwaarden, D. C. van Duyn, Sens. Actuators, A 22, 621 (1990).

https://doi.org/10.1016/0924-4247(89)80046-9

. D. Randjelović, M.P. Frantlović, B.L. Miljković, B.M. Popović, Z.S. Jakšić, Vacuum 101, 118 (2014).

https://doi.org/10.1016/j.vacuum.2013.07.044

. A.G. Kozlov, Sens. Actuators, A 75, 139(1999).

https://doi.org/10.1016/S0924-4247(99)00015-1

. D. Randjelović, Ž. Lazić , M. Popović, M. Matić,

Proceedings 28th Intl. Conf. on Microelectron. 12821610 (2012).

https://doi.org/10.1109/MIEL.2012.6222819

. A.W. van Herwaarden, P. M. Sarro, J.W. Garadner, P. Bataillard, Sens. Actuators, A 43, 24 (1994).

https://doi.org/10.1016/0924-4247(93)00658-Q

. D. Randjelović, A. Petropoulos, G. Kaltsas, M. Stojanović, Ž. Lazić, Z. Djurić, M. Sens. Actuators, A 141, 404 (2008).

https://doi.org/10.1016/j.sna.2007.10.043

. M. Gómez-Franco, A. Ramírez-Treviño, WADED2011. 1st workshop on analog and digital electronic design, (2011).

. F. Volklein, H. Baltes, Sens. Actuators, A 36, 65 (1993).

https://doi.org/10.1016/0924-4247(93)80142-4

. J. Xie, C. Lee, M.F. Wang, Y. Liu, H. Feng, J. Micromech. Microeng. 19, 125029 (2009).

https://doi.org/10.1088/0960-1317/19/12/125029

. R. Rubio Bonilla, “Nueva Arquitectura para un nuevo analizador compacto de gases basado en una matriz de microsensores de infrarrojo no específico”, PhD thesis, Universitat Barcelona, España (2007).

http://205.209.45.207/Hantale/WEB.nsf/Anexos/A2C917D7164C9BE38725738B000EB637/$FILE/Tesis_rafa.pdf

. J. Lerchner, A. Wolf, G. Wolf, I. Fernandez, Thermochim. Acta 446, 168 (2006).

https://doi.org/10.1016/j.tca.2006.04.020

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Array