X-ray photoelectron spectroscopy characterization of self-assembled monolayers for micromechanical biosensing applications

Authors

  • Angelica Gabriela Mendoza Madrigal Facultad de Nutrición Universidad Autónoma del Estado de Morelos
  • Alejandro José Giménez Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro.
  • Julio Heriberto Mata Salazar Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro. Centro Nacional de Metrología, El Marques, Querétaro, México
  • Juan Vicente Méndez Méndez Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional. Distrito Federal, México
  • Gabriel Luna Bárcenas Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro.
  • Rafael Ramírez Bon Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro.
  • Francisco Javier Espinoza Beltrán Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro.

Keywords:

Self-assembled monolayer, cantilever, mechanical biosensor, X-ray photoelectron spectroscopy.

Abstract

Among the possible alternatives to microbiological techniques, small and extremely sensitive sensors called micromechanical oscillators are increasingly being used for the detection of very small masses or for stress sensing. Several types of biological bodies can be detected using micromechanical oscillators including proteins, peptides, viruses and bacteria. Therefore it is of great importance for the advancement of these detection methods to have a better understanding of the mechanisms used to attach the targeted bodies to the mechanical oscillators. In the present study, a silane-based self-assembled monolayers (SAM) are created over commercial cantilever mechanical oscillators. The fabricated SAMs are thoroughly characterized using high resolution angle-resolved XPS. A proof-of-concept experiment is conducted to study the performance of the characterized SAMs; this experiment is prepared in order to detect the interaction of the micromechanical oscillators with a protein (BSA) using a fluid cell from a BioAFM.

References

V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, and C. Adley, "An overview of foodborne pathogen detection: In the perspective of biosensors," Biotechnol. Adv., vol. 28, pp. 232-254, 2010.

R. van den Hurk and S. Evoy, "Deflection cantilever detection of interferon gamma," Sensors Actuators B: Chem., vol. 176, pp. 960-965, 2013.

N. Nugaeva, K. Y. Gfeller, N. Backmann, H. P. Lang, M. Duggelin, and M. Hegner, "Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection," Biosensors Bioelectron., vol. 21, pp. 849-856, 2005.

U. Sungkanak, A. Sappat, A. Wisitsoraat, C. Promptmas, and A. Tuantranont, "Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy," Biosensors Bioelectron., vol. 26, pp. 784-789, 2010.

J. Tamayo, P. M. Kosaka, J. J. Ruz, A. San Paulo, and M. Calleja, "Biosensors based on nanomechanical systems," Chem. Soc. Rev., vol. 42, pp. 1287-1311, 2013.

A. G. Mendoza Madrigal, J. J. Chanona Pérez, H. Hernández Sánchez, E. Palacios González, G. Calderon Domínguez, J. V. Mendez Mendez, L. J. B., and V. V. L. A., "Mechanical biosensors in biological and food area: A review," Rev Mex Ing Quimica, vol. 12, pp. 205-225, 2013.

H. Joung, W. Shim, D. Chung, J. Ahn, B. Chung, H. Choi, S. Ha, K. Kim, K. Lee, C. Kim, K. Kim, and M. Kim, "Screening of a specific monoclonal antibody against and detection ofListeria monocytogenes whole cells using a surface plasmon resonance biosensor," Biotechnol. Bioproc. Eng., vol. 12, pp. 80-85, 2007.

B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, "Single cell detection with micromechanical oscillators," J. Vac. Sci. Technol., B, vol. 19, pp. 2825-2828, 2001.

A. Berquand, N. Xia, D. G. Castner, B. H. Clare, N. L. Abbott, V. Dupres, Y. Adriaensen, and Y. F. Dufrane, "Antigen Binding Forces of Single Antilysozyme Fv Fragments Explored by Atomic Force Microscopy," Langmuir, vol. 21, pp. 5517-5523, 2005.

M. Alvarez and L. M. Lechuga, "Microcantilever-based platforms as biosensing tools," Analyst, vol. 135, pp. 827-836, 2010.

P. S. Waggoner and H. G. Craighead, "Micro- and nanomechanical sensors for environmental, chemical, and biological detection," Lab on a Chip, vol. 7, pp. 1238-1255, 2007.

R. Raiteri, M. Grattarola, H.-J. Butt, and P. Skladal, "Micromechanical cantilever-based biosensors," Sensors Actuators B: Chem., vol. 79, pp. 115-126, 2001.

B. Dhayal, W. A. Henne, D. D. Doorneweerd, R. G. Reifenberger, and P. S. Low, "Detection of Bacillus subtilis Spores Using Peptide-Functionalized Cantilever Arrays," J. Am. Chem. Soc., vol. 128, pp. 3716-3721, 2006.

H. B. Lu, C. T. Campbell, and D. G. Castner, "Attachment of Functionalized Poly(ethylene glycol) Films to Gold Surfaces," Langmuir, vol. 16, pp. 1711-1718, 2000.

B. Lee and T. Nagamune, "Protein microarrays and their applications," Biotechnol. Bioproc. Eng., vol. 9, pp. 69-75, 2004.

J. Choi, J. An, and B. Kim, "Effect of biolinker on the detection of prostate specific antigen in an interferometry," Biotechnol. Bioproc. Eng., vol. 14, pp. 6-12, 2009.

B. Fang, Q. Ling, W. Zhao, Y. Ma, P. Bai, Q. Wei, H. Li, and C. Zhao, "Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly(acrylonitrile-co-acrylic acid) blended membrane," J. Membr. Sci., vol. 329, pp. 46-55, 2009.

D. R. Baer and M. H. Engelhard, "XPS analysis of nanostructured materials and biological surfaces," J. Electron. Spectrosc. Relat. Phenom., vol. 178-179, pp. 415-432, 2010.

A. Ebner, P. Hinterdorfer, and H. J. Gruber, "Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers," Ultramicroscopy, vol. 107, pp. 922-927, 2007.

A. Herrera-Gomez, M. Bravo-Sanchez, F. S. Aguirre-Tostado, and M. O. Vazquez-Lepe, "The slope-background for the near-peak regimen of photoemission spectra," J. Electron. Spectrosc. Relat. Phenom., vol. 189, pp. 76-80, 2013.

"The peak-fitting software employed was AAnalyzer ® (www.rdata.com.mx/AAnalyzer) ".

J. Muñoz-Flores and A. Herrera-Gomez, "Resolving overlapping peaks in ARXPS data: The effect of noise and fitting method," J. Electron. Spectrosc. Relat. Phenom., vol. 184, pp. 533-541, 2012.

H. P. Lang, M. Hegner, and C. Gerber, "Cantilever array sensors," Mater. Today, vol. 8, pp. 30-36, 2005.

F. J. E. Beltrán, J. Muñoz-Saldaña, D. Torres-Torres, R. Torres-Martínez, and G. A. Schneider, "Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements," J. Mater. Res., vol. 21, pp. 3072-3079, 2006.

G. Longo, L. Alonso Sarduy, L. M. Rio, A. Bizzini, A. Trampuz, J. Notz, G. Dietler, and S. Kasas, "Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors," Nat Nano, vol. 8, pp. 522-526, 2013.

N. Kohler, G. E. Fryxell, and M. Zhang, "A Bifunctional Poly(ethylene glycol) Silane Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation with Cell Targeting Agents," J. Am. Chem. Soc., vol. 126, pp. 7206-7211, 2004.

M. P. Seah, J. H. Qiu, P. J. Cumpson, and J. E. Castle, "Simple method of depth profiling (stratifying) contamination layers, illustrated by studies on stainless steel," Surf. Interface Anal., vol. 21, pp. 336-341, 1994.

Downloads

Published

2016-09-15

Issue

Section

Research Papers

How to Cite

X-ray photoelectron spectroscopy characterization of self-assembled monolayers for micromechanical biosensing applications. (2016). Superficies Y Vacío, 29(3), 87-92. https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/82