Resumen
A stainless steel core catalyst with several green precursors, butanol, diethyl ether, ethyl acetate and hexane, were used to obtain multi-walled carbon nanotubes via chemical vapor deposition. Argon was used as carrier gas at 50-90 ml/min rates. Samples were synthetized at 680-850 ºC, according to the precursor used. The characterization techniques were scanning electronic microscopy, X-ray diffraction, energy dispersive, Fourier transformed infrared and Raman spectroscopy. Themicrographs showed tangled carbon nanotubes formation with different diameters from 50-300 nm. Elemental analysis indicated carbon atomic percentages ranging from 93-99 %, 1.0-4.5 % iron and less than 1% of manganese, chrome and silicon. X-Ray diffraction demonstrated the characteristic carbon nanotubes peak (002)at 26°. G and D carbon nanotubes distinctive bands were confirmed by Raman spectra for all samples.Citas
. P. Anastas, J. Zimmerman, Environ. Sci. Technol. 37, 94A (2003).
. M. Kumar, Y. Ando, J. Nanosci. Nanotech. 10, 3739 (2010).
. E. Van Hooijdonk, C. Bittencourt, R. Snyders, J. F. Colomer, Beilstein J. Nanotechno. 4, 129 (2013).
. Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, Chem. Phys. Lett. 374, 53 (2003).
. A. Grüneis, M. Rümmeli, C. Kramberger, A. Barreiro, T. Pichler, R. Pfeiffer, H. Kuzmany, T. Gemming, B. Büchner, Carbon 44, 3177 (2006).
. A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 103, 6484 (1999).
. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 360, 229 (2002).
. H. Qi, C. Qian, J. Liu, Chem. Mater. 18, 5691 (2006).
. H. E. Unalan, M. Chhowalla, Nanotechnology 16, 2153 (2005).
. A. Gómez, P. González, L. García, F. Granados, N. Flores, V. López, L. Domratcheva, J. Anal. Appl. Pyrol. 113, 483 (2015).
. S. Paul, S. Samdarshi, New Carbon Mater. 26, 85 (2011).
. P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301 (2010).
. B. Karn, S. S. Wong, Sustainable nanotechnology and the environment: advances and achievements 1124, American Chemical Society 1124, 1 (2013).
. D. Pavia, G. Lampman, G. Kriz, J. Vyvyan, Introduction to spectroscopy: cengage learning, ed. Cole, 4th E, 2008.
. L. H. Teng, j. Zhejiang Univ-Sc A 9, 720 (2008).
. Y. S. Jung, D. Y. Jeon, Appl. Surf. Sci. 193, 129 (2002).
. N. Kouklin, M. Tzolov, D. Straus, A. Yin, J. Xu, Appl. Phys. Lett. 85, 4463 (2004).
. Y. Luo, D. Kong, Y. Jia, J. Luo, Y. Lu, D. Zhang, Q. Kangwen, L. Chang, Y. Ting, Rsc Advance 3, 5851-5860.
. G. Allaedini, P. Aminayi, S. M. Tasirin, J. Nanomater. 501, 961231 (2015).
. P. Mahanandia, P. Vishwakarma, K. Nanda, V. Prasad, K. Barai, A. Mondal, S. Sarangi, G. K. Dey, S.V. Subramanyam, Solid State Commun. 145, 143 (2008).
. A. Cao, C. Xu, J. Liang, D. Wu, B. Wei, Chem Phys. Lett. 344, 13 (2001).
. Y. Shiratori, H. Hiraoka, M. Yamamoto, Mater. Chem. Phys. 87, 31 (2004).
. E. Antunes, A. Lobo, E. Corat, V. Trava-Airoldi, Carbon 45, 913 (2007).
. M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005).