Intercalation of p-toluenesulfonic acid into Mg-Al layered double hydroxide
Probable orientations of the PTSA anions between the Mg-Al hydroxide layers.
PDF (English)

Cómo citar

Manríquez-Ramírez, M. E., Reza-San Germán, C. M., & Estrada-Flores, M. (2022). Intercalation of p-toluenesulfonic acid into Mg-Al layered double hydroxide. Superficies Y Vacío, 35, 221101. https://doi.org/10.47566/2022_syv35_1-221101

Resumen

Layered double hydroxide represents a class of materials for selective adsorption and catalysis. In the present work, anionic p-toluenesulfonic acid (PTSA) was successfully incorporated into the interlayer domain of Mg-Al layered double hydroxide (LDH), synthesized by the co-precipitation route. Materials were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, magic angle nuclear magnetic resonance (13C MAS-NMR) spectroscopy and UV-Visible diffuse reflectance (UV-VIS/DR). All samples supported PTSA intercalation at room temperature in the basal space, the interlayer distance increased by the intercalations of the above mentioned according to the arrangement of PTSA molecules in the interlayer. The LDH-PTSA structure collapsed at 400 °C and the organic portion of those materials occurred by partial combustion, which in turn gives rise to reduced species, such as carbon and sulfide anions.

https://doi.org/10.47566/2022_syv35_1-221101
PDF (English)

Citas

.[1]. A. Vaccari, Catal. Today 41, 53 (1998).

https://doi.org/10.1016/S0920-5861(98)00038-8

.[2]. M. Ajat, K. Yusoff, M. Zobir Hussein, Curr. Nanosci. 4, 391 (2008).

https://doi.org/10.2174/157341308786306161

.[3]. D. Tichit, C. Gerardin, R. Durand, B. Coq, Top. Catal. 39, 89 (2006).

https://doi.org/10.1007/s11244-006-0041-6

.[4]. V. Constantino, T. Pinnavaia, Catal. Lett. 23, 361 (1994).

https://doi.org/10.1007/BF00811370

.[5]. M.J. Climent, A. Corma, S. Iborra, K. Epping, A. Velty, J. Catal. 225, 316 (2004).

https://doi.org/10.1016/j.jcat.2004.04.027

.[6]. A. Chen, H. Xu, Y. Yue, W. Hua, W. Shen, Z. Gao, Appl. Catal. A-Gen. 274, 101 (2004).

https://doi.org/10.1016/j.apcata.2004.05.033

.[7]. W. Tongamp, Q. Zhang, F. Saito, J. Mater. Sci. 42, 9210 (2007).

https://doi.org/10.1007/s10853-007-1866-5

.[8]. V.R. Choudhary, D. Dumber, B. Uphade, V. Narkhede, J. Mol. Catal. A Chem. 215, 129 (2004).

https://doi.org/10.1016/j.molcata.2004.01.009

.[9]. L. Ren, J. He, S. Zhang, D.G. Evans, X. Duan, J. Mol. Catal. B Enzym. 18, 3 (2002).

https://doi.org/10.1016/S1381-1177(02)00008-5

.[10]. L. Vieille, M. Moujahid, C. Taviot-Guého, J. Cellier, J.P. Besse, F. Leroux, J. Phys. Chem. Solids 65, 385 (2004).

https://doi.org/10.1016/j.jpcs.2003.08.029

.[11]. W. Yang, Y. Kim, P.K.T. Liu, M. Sahimi, T.T. Tsotsis, Chem. Eng. Sci. 57, 2945 (2002).

https://doi.org/10.1016/S0009-2509(02)00185-9

.[12]. J.T. Kloprogge, D. Wharton, L. Hickey, R.L. Frost, Am. Miner. 87, 623 (2002).

https://doi.org/10.2138/am-2002-5-604

.[13]. V. Rives, Mater. Chem. Phys. 75, 19 (2002).

https://doi.org/10.1016/S0254-0584(02)00024-X

.[14]. R. Trujillano, M.J. Holgado, F. Pigazo, V. Rives, Physica B Condens. Matter 373, 267-273 (2006).

https://doi.org/10.1016/j.physb.2005.11.154

.[15]. H.A. Prescott, Z-J Li, E. Kemnitz, A. Trunschke, J. Deutsch, H. Lieske, A. Auroux, J. Catal. 234, 119 (2005).

https://doi.org/10.1016/j.jcat.2005.06.004

.[16]. A. Corma, V. Fornés, F. Rey, J. Catal. 148, 205 (1994).

https://doi.org/10.1006/jcat.1994.1202

.[17]. G. Fornasari, M. Gazzano, D. Matteuzi, F. Trifiro, A. Vaccari, Appl. Clay Sci. 10, 69 (1995).

https://doi.org/10.1016/0169-1317(95)00022-V

.[18]. Y. Lin, J. Wang, D.G. Evans, D. Li, J. Phys. Chem. Solids 67, 998 (2006).

https://doi.org/10.1016/j.jpcs.2006.01.016

.[19]. M.A. Ulibarri, F.M. Labajos, V. Rives, R. Trujillano, W. Kagunya, W. Jones, Inorg. Chem. 33, 2592 (1992).

https://doi.org/10.1016/j.jpcs.2006.01.016

.[20]. K. Zou, H. Zhang, X. Duan, Chem. Eng. Sci. 62, 2022 (2007).

https://doi.org/10.1016/j.ces.2006.12.041

.[21]. B. Coq, J.M. Planeix, V. Brotons, Appl. Catal. A-Gen. 173, 175 (1998).

https://doi.org/10.1016/S0926-860X(98)00177-X

.[22]. K. Chibwe, W. Jones, Chem. Comm. 1989, 926 (1989). https://doi.org/10.1039/C39890000926

.[23]. Z.P. Xu, R. Xu, H.C. Zeng, Nano lett. 12, 703 (2001). https://doi.org/10.1021/nl010045d

.[24]. X. Hou, D.L. Bish, S.L. Wang C.T. Johnston, R.J. Kikpatrick, Am. Miner. 88, 167 (2003).

https://doi.org/10.2138/am-2003-0120

.[25]. M. S. San Román, M.J. Holgado, C. Jaubertie, V. Rives, Solid State Sci. 10, 1333 (2008).

https://doi.org/10.1016/j.solidstatesciences.2008.01.026

.[26]. M. Ristova, L. Pejov, M. Žugic, B. Soptrajanov, J. Mol. Struct. 482-483, 647 (1999).

https://doi.org/10.1016/S0022-2860(98)00890-4

.[27]. J.M. Alía, H.G.M. Edwards, B.M. Kiernan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 1533 (2004).

https://doi.org/10.1016/j.saa.2003.08.016

.[28]. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986).

.[29]. M. Moujahid, J. Inacio, J.P. Besse, F. Leroux, Micropor. Mesopor. Mat. 57, 37 (2003).

https://doi.org/10.1016/S1387-1811(02)00505-X

.[30]. D.J. Zalewski, S. Alerasool, P.K. Doolin, Catal. Today 53, 419 (1999).

https://doi.org/10.1016/S0920-5861(99)00137-6

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 Array