Deposition of SnO2 buffer layer onto commercial conducting glass to be used in thin films solar cells technology
PDF (English)
LENS (English)

Cómo citar

Melo, S., Vigil, O., Hernández-Gutiérrez, C. A., Pulgarín-Agudelo, F., Mendoza-Leon, H., & Rodríguez, E. (2018). Deposition of SnO2 buffer layer onto commercial conducting glass to be used in thin films solar cells technology. Superficies Y Vacío, 31(4), 63-68. https://doi.org/10.47566/2018_syv31_1-040063

Resumen

In this work the influence of the deposition of SnO2 buffer layer on the optical, electrical and morphological properties of commercial conducting glasses is presented. Previously the transparent conducting oxide (TCO) were studied in order to determine which is the most appropriate in solar cell applications. The SnO2 thin films were deposited onto glass and commercial conducting glass by pneumatic spray pyrolysis (PSP) and magnetron sputtering techniques and characterized optically and electrically. TCO/buffer bi-layers configuration were processed and characterized through a modified well-known Haccke figure of merit. The results are discussed in terms of considering the usefulness or otherwise of this configuration, depending on the morphological quality of commercial conductive glass in the processing of second-generation solar cells in thin film technology.

https://doi.org/10.47566/2018_syv31_1-040063
PDF (English)
LENS (English)

Citas

. A.B.F. Martinson, J.W. Elam, J. Liu, M.J. Pellin, T.J. Marks, J.T. Hupp, Nano Lett. 8, 2862 (2008).

https://pubs.acs.org/doi/10.1021/nl8015285

. F. Yang, S.R. Forrest, Adv. Mater. 18, 2018 (2006).

https://doi.org/10.1002/adma.200600797

. A.K. Ghosh, C. Fishman, T. Feng, J. Appl. Phys. 49, 3490 (1978).

https://doi.org/10.1063/1.325260

. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137 (2015) 6730.

https://doi.org/10.1021/jacs.5b01994

. C.S. Ferekides, R. Mamazza, U. Balasubramanian, D.L. Morel, Thin Solid Films 480, 224 (2005).

https://doi.org/10.1016/j.tsf.2004.11.094

. S. Gayam, S. Bapanapalli, H. Zhao, L. Nemani, D.L. Morel, C.S. Ferekides, Thin Solid Films 515, 6060 (2007).

https://doi.org/10.1016/j.tsf.2006.12.165

P. Sinsermsuksakul, L. Sun , S.W. Lee, H.H. Park , S.B. Kim, C. Yang, R.G. Gordon, Adv. Energy Mater. 4, 1400496 (2014).

https://doi.org/10.1002/aenm.201400496

H. Sun, K. Sun, J. Huang, C. Yan, F. Liu, J. Park, A. Pu, J.A. Stride, M.A. Green, X. Hao, ACS Appl. Energy Mater. 1, 154 (2018).

https://doi.org/10.1021/acsaem.7b00044

M. Luo, M. Leng, X. Liu, J. Chen, C. Chen, S. Qin, J. Tang, Appl. Phys. Lett. 104, 173904 (2014).

https://doi.org/10.1063/1.4874878

Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E.H. Sargent, J. Tang, Nat. Photonics 9, 409 (2015).

https://www.nature.com/articles/nphoton.2015.78

X. Liu, X. Xiao, Y. Yang, D.-J. Xue, D.-B. Li, C. Chen, S. Lu, L. Gao, Y. He, M.C. Beard, G. Wang, S. Chen, J. Tang, Prog. Photovolt: Res. Appl. 25, 861 (2017).

https://doi.org/10.1002/pip.2900

X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.-J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, ACS Appl. Mater. Interfaces 6, 10687 (2014).

https://pubs.acs.org/doi/abs/10.1021/am502427s

M.A. Yıldırım, S.T. Yıldırım, E.F. Sakar, A. Ateş, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 133, 60 (2014).

https://doi.org/10.1016/j.saa.2014.05.035

H.-R. Kim, G.-H. Lee, D.-H. Kim, J. Phys. D Appl. Phys. 44, 185203 (2011).

https://doi.org/10.1088/0022-3727/44/18/185203

G. Korotcenkov, V. Brinzari, J. Schwank, M. DiBattista, A. Vasiliev, Sensors Actuat. B-Chem. 77, 244 (2001).

https://doi.org/10.1016/S0925-4005(01)00741-9

Y.M. Lu, J. Jiang, M. Becker, B. Kramm, L. Chen, A. Polity, Y.B. He, P.J. Klar, B.K. Meyer, Vacuum 122, 347 (2015).

https://doi.org/10.1016/j.vacuum.2015.03.018

H.-E. Cheng, D.-C. Tian, K.-C. Huang, Procedia Eng. 36, 510 (2012).

https://doi.org/10.1016/j.proeng.2012.03.074

O. Vigil Galán, D. Jiménez Olarte, G. Contreras-Puente, M. Courel, J. Renew. Sustain. Energy 7, 013115 (2015).

https://doi.org/10.1063/1.4906983

A. Klein, J. Phys.: Condens. Matter 27, 134201 (2015).

https://doi.org/10.1088/0953-8984/27/13/134201

J.M. Kephart, R.M. Geisthardt, W.S. Sampath, Prog. Photovolt. Res. Appl. 23, 1484 (2015).

https://doi.org/10.1002/pip.2578

J.M. Kephart, J.W. McCamy, Z. Ma, A. Ganjoo, F.M. Alamgir, W.S. Sampath, Sol. Energy Mater. Sol. Cells 157, 266 (2016).

https://doi.org/10.1016/j.solmat.2016.05.050

G. Haacke, J. Appl. Phys. 47, 4086 (1976).

https://doi.org/10.1063/1.323240

K. Kant, D. Losic, R.E. Sabzi, Int. J. Nanosci. 10, 1(2011).

https://doi.org/10.1142/S0219581X11007466

G.E. Patil, D.D. Kajale, S.D. Shinde, V.B. Gaikwad, G.H. Jain, Int. Nano Lett. 2, 46 (2012).

https://doi.org/10.1186/2228-5326-2-17

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2018 Array