Resumen
With the aim to study the transformation from the commercially amorphous Zr(OH)4 to the t-ZrO2, phase, the starting material was isothermally treated in a calorimeter at 350, 365, 370, 375 and 380 o C. The TGA coupled to the DSC technique was used to determine with high precision both the temperature and time necessary to achieve the amorphous Zr(OH)4 to t-ZrO2 transformation. The mass loss and heat flow, as a function of time, were monitored to study the dehydroxylation of Zr(OH)4 and the crystallization processes, respectively. Raman spectroscopy was used to obtain evidence of the t-ZrO2 formation. The DSC results show an exothermic peak (typical of amorphous-crystalline transitions) related to the formation of t-ZrO2. Our results indicate that the time necessary to obtain the t-ZrO2 phase shortens when temperature increases.
Citas
. X. Zhang, H. Wang, Bo Xu, J. Phys. Chem. B 109, 9678 (2005).
http://pubs.acs.org/doi/abs/10.1021/jp050645r
. W.C. Maskell, Solid State Ionics 134, 43 (2000).
https://doi.org/10.1016/S0167-2738(00)00712-8
. S. Gupta, Dent Implants Dentures 1, 1 (2016)
. C. Piconi, G. Maccauro, Biomaterials 20, 1(1999).
https://doi.org/10.1016/S0142-9612(98)00010-6
. J.R. Kelly, P. Benetti, Aust. Dent. J. 56, 84 (2011)
https://doi.org/10.1111/j.1834-7819.2010.01299.x
. M.I. Gutierrez, E.H. Penilla, L. Leija, A. Vera, J.E. Garay, G. Aguilar, Adv. Healthcare Mater. 6, 1 (2017).
http://onlinelibrary.wiley.com/doi/10.1002/adhm.201700214/abstract
. M. Li, Z. Feng, G. Xiong, P. Ying, Q. Xin, and C. Li, J. Phys. Chem. B 105, 8107 (2001).
http://pubs.acs.org/doi/abs/10.1021/jp010526l
. T. Sato, J. Therm. Anal. Calorim. 69, 255 (2002).
http://akademiai.com/doi/abs/10.1023/A%3A1019962428910
. M. Picquart, T. López, R. Gómez, E. Torres, A. Moreno, and J. Garcia, J. Therm. Anal. Calorim. 76, 755 (2004).
http://akademiai.com/doi/abs/10.1023/B%3AJTAN.0000032260.31955.6e
. J.M. Hernández-Enríquez, L.A. García-Serrano, R. García-Alamilla, L.A. Cortez-Lajas, A. Cueto-Hernández, Superficies y Vacío 22, 1 (2009).
http://smcsyv.fis.cinvestav.mx/supyvac/22_2/SV2220109.pdf
. P. Zhang, K.L. Choy, Int. J. Eng. Res. Sci. 7, 18 (2015).
http://ijoer.com/Paper-October-2015/IJOER-OCT-2015-17.pdf
. M. Jouanne, J.F. Morhange, M.A. Kanehisa, E. Haro-Poniatowski, G.A. Fuentes, E. Torres, E. Hernández-Tellez, Phys. Rev. B 64, 1 (2001).
https://doi.org/10.1103/PhysRevB.64.155404
. J. Livage, K. Doi, and C. Mazieres, J. Am. Ceram. Soc. 51, 349 (1968).
http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1968.tb15952.x/full
. V.B. Glushkova, A.N. Lapshin, Glass Phys. Chem. 29, 415 (2003).
https://doi.org/10.1023/A:1025137313344
. O. Roberts, A.J.G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S.M. Kreynin, T.K. Neo, A.M. Korsunsky, W.C.E. Proceeding 2, 1173 (2014)
https://ora.ox.ac.uk/objects/uuid:96a3c657-9726-4a66-81ae-9fbb581ad0eb
. R.P. Denkewicz, TenHuisen K.S., J.H. Adair, J. Mater. Res. 5, 2698 (1990) https://doi.org/10.1557/JMR.1990.2698
. H. Nishizawa, N. Yamasaki, K. Matsuoka, H. Mitsushio, J. Am. Ceram. Soc. 65, 343 (1982).
https://doi.org/10.1111/j.1151-2916.1982.tb10467.x
. M.D. Baro, N. Clavaguera, S. Suriñach, Mater. Sci. Eng. 97, 333 (1988).
https://doi.org/10.1016/0025-5416(88)90068-7
. V.G. Keramidas, W.B. White, J. Am. Ceram. Soc. 57, 22 (1974).
https://doi.org/10.1111/j.1151-2916.1974.tb11355.x
. G. Stefanic, S. Music, S. Popovic, A. Sekulic, J. Mol. Struct. 408/409, 391 (1997).
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2018 Array