Bipolar resistive switching on Ti/TiO2/NiCr memory cells
PDF (English)
LENS (English)

Cómo citar

Hernandez Rodriguez, E., Marquez Herrera, A., Melendez Lira, M., Valaguez Velazquez, E., & Zapata Torres, M. (2017). Bipolar resistive switching on Ti/TiO2/NiCr memory cells. Superficies Y Vacío, 30(4), 65-68. https://doi.org/10.47566/2017_syv30_1-040065

Resumen

We investigated the electric-field-induced resistance-switching behavior of metal-insulator-metal (MIM) cells based on TiO2 thin films fabricated by the reactive RF-sputtering technique. MIM cells were constructed by sandwiched TiO2 thin films between a pair of electrodes; Ti thin films were employed to form an ohmic bottom contact and NiCr thin films were employed to form Schottky top electrodes obtaining Ti/TiO2/NiCr MIM cells. Schottky barrier height for the TiO2/NiCr junction was determined according to the thermionic emission model by using the Cheung´s functions. SEM and Raman analysis of the TiO2 thin films were carried out to ensure the quality of the films. Current-Voltage (I-V) sweeps obtained at room temperature by the application of dc bias showed a bipolar resistive switching behavior on the cells. Both low resistance state (ON state) and high resistance state (OFF state), of Ti/TiO2/NiCr cells are stable and reproducible during a successive resistive switching. The resistance ratio of ON and OFF state is over 103 and the retention properties of both states are very stable after 105 s with a voltage test of 0.1 V.

https://doi.org/10.47566/2017_syv30_1-040065
PDF (English)
LENS (English)

Citas

. A. Sawa, Mater. Today 11.6, 28 (2008).

https://doi.org/10.1016/S1369-7021(08)70119-6

. W. Wełnic, M. Wuttig, Mater. Today 11.6, 20 (2008).

https://doi.org/10.1016/S1369-7021(08)70118-4

. C. Kügeler, M. Meier, R. Rosezin, S. Gilles, R. Waser, Solid-State Electron. 53, 1287 (2009).

https://www.sciencedirect.com/science/article/pii/S0038110109002871

. T. Oka, N. Nagaosa, Appl. Phys. Lett. 85, 266403 (2005).

https://doi.org/10.1103/PhysRevLett.95.266403

. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang. K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 033715 (2005).

https://doi.org/10.1063/1.2001146

. U. Russo, D. Ielimini, C. Cagli, A. Lacaita, S. Spiga, C.Wiemer, M. Perego, M. Fanciulli, Electron Devices Meeting, 2007 IEEE International, 775 (2007).

https://doi.org/10.1109/TED.2008.2010584

. B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han, J. Kang, B. Yu, IEEE Electron Device Letters 30, 1326 (2009).

http://ieeexplore.ieee.org/document/5291772/

. S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, Appl. Phys. Lett. 89, 042904 (2006).

https://doi.org/10.1063/1.2234840

. M.J. Rozenberg, I.H. Inoue, M.J. Sánchez, Appl. Phys. Lett. 88, 0033510 (2006).

https://doi.org/10.1016/j.tsf.2004.10.059

. W.Y. Yang, W.G. Kim, S.W. Rhee, Thin Solid Films 517, 967 (2008).

https://doi.org/10.1016/j.tsf.2008.08.184

. C.Y. Lin, D.Y. Lee, S.Y. Wang, C.C. Lin, T.Y. Tseng, Surf. Coat. Technol. 203, 628 (2008).

https://doi.org/10.1016/j.surfcoat.2008.06.133

. C.Y. Lin, C.Y. Wu, C.Y. Wu, C.C. Lin, T.Y. Tseng, Thin Solid Films 516, 444 (2007).

https://doi.org/10.1016/j.tsf.2007.07.140

. X. Cao, X.M. Li, X.D. Gao, Y.W. Zhang, X.J. Liu, Q.Wang, L.D. Chen, Appl. Phys. A 97, 883 (2009).

https://doi.org/10.1007/s00339-009-5351-7

. Xun Cao, Xiaomin Li,Weidong Yu, Xinjun Liu, Xiliang He, Mater. Sci. Eng. B 157, 36 (2009).

https://doi.org/10.1016/j.mseb.2008.12.005

. E. Hernandez-Rodriguez, A. Marquez-Herrera, M. Melendez-Lira, M. Zapata-Torres, Mater. Sci. Eng. B 172, 187 (2010).

https://doi.org/10.1016/j.mseb.2010.05.017

. Y.C. Bae, A.R. Lee, J.S. Kwak, H. Im, Y.H. Do, J.P. Hong, Appl. Phys. A 102, 1009 (2011).

https://doi.org/10.1007/s00339-011-6289-0

. H.Y. Jeong, S.K. Kim, J.Y. Lee, S.Y. Choi, Appl. Phys. A 102, 967 (2011).

https://doi.org/10.1007/s00339-011-6278-3

. Y. Li, G. Zhao, X. Zhou, L. Pan, Y. Ren, J. Sol-Gel Sci. Technol. 56, 61 (2010).

https://doi.org/10.1007/s10971-010-2274-x

. H.Y. Jeong, J.Y. Lee, S.Y. Choi, J.W. Kim, Appl. Phys. Lett. 95, 162108 (2009).

https://doi.org/10.1063/1.3251784

. Y.H. Do, J.S. Kwak, Y.C. Bae, K. Jung, H. Im, J.P. Hong, Thin Solid Films 518, 4408 (2010).

https://doi.org/10.1016/j.tsf.2010.01.016

. R. Dong, D.S. Lee, M.B. Pyun, M. Hasan, H.J. Choi, M.S. Jo, D.J. Seong, M. Chang, S.H. Heo, J.M. Lee, H.K. Park, Hyunsang Hwang, Appl. Phys. A 93, 409 (2008).

https://doi.org/10.1007/s00339-008-4782-x

. H.Y. Jeong, J.Y. Lee, S.Y. Choi, Appl. Phys. Lett. 97, 042109 (2010).

https://doi.org/10.1063/1.3467854

. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85(1986).

https://doi.org/10.1063/1.97359

. S. Gholami, H. Hajghassem, M. Khajeh, IEICE Electron. Express 6, 1325 (2009).

https://doi.org/10.1587/elex.6.1325

. Y. Li, G. Zhao, X. Zhou, L. Pan, Y. Ren, Mat. Sci. Semicond. Process. 15, 37 (2012).

https://doi.org/10.1016/j.mssp.2011.07.001.

. H. Mähne, S. Slesazeck, S. Jakschik, I. Dirnstorfer, T. Mikolajick, Microelectron. Eng. 88, 1148 (2011).

https://doi.org/10.1016/j.mee.2011.03.030

. N.A. Tulina, I.Yu. Borisenko, A.M. Ionov, I.M. Shmyt’ko, Solid State Commun. 150, 2089 (2010).

https://doi.org/10.1016/j.ssc.2010.09.022

. L.W. Feng, Y.F. Chang, C.Y. Chang, T.C. Chang, S.Y. Wang, P.W. Chiang, C.C. Lin, S.C. Chen, S.C. Chen, Thin Solid Films 519, 1536 (2010).

https://doi.org/10.1016/j.tsf.2010.08.165

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2017 Array