Bipolar resistive switching on Ti/TiO2/NiCr memory cells
DOI:
https://doi.org/10.47566/2017_syv30_1-040065Keywords:
TiO2, MIM cells, Resistive switching, RRAMAbstract
We investigated the electric-field-induced resistance-switching behavior of metal-insulator-metal (MIM) cells based on TiO2 thin films fabricated by the reactive RF-sputtering technique. MIM cells were constructed by sandwiched TiO2 thin films between a pair of electrodes; Ti thin films were employed to form an ohmic bottom contact and NiCr thin films were employed to form Schottky top electrodes obtaining Ti/TiO2/NiCr MIM cells. Schottky barrier height for the TiO2/NiCr junction was determined according to the thermionic emission model by using the Cheung´s functions. SEM and Raman analysis of the TiO2 thin films were carried out to ensure the quality of the films. Current-Voltage (I-V) sweeps obtained at room temperature by the application of dc bias showed a bipolar resistive switching behavior on the cells. Both low resistance state (ON state) and high resistance state (OFF state), of Ti/TiO2/NiCr cells are stable and reproducible during a successive resistive switching. The resistance ratio of ON and OFF state is over 103 and the retention properties of both states are very stable after 105 s with a voltage test of 0.1 V.
References
. A. Sawa, Mater. Today 11.6, 28 (2008).
https://doi.org/10.1016/S1369-7021(08)70119-6
. W. Wełnic, M. Wuttig, Mater. Today 11.6, 20 (2008).
https://doi.org/10.1016/S1369-7021(08)70118-4
. C. Kügeler, M. Meier, R. Rosezin, S. Gilles, R. Waser, Solid-State Electron. 53, 1287 (2009).
https://www.sciencedirect.com/science/article/pii/S0038110109002871
. T. Oka, N. Nagaosa, Appl. Phys. Lett. 85, 266403 (2005).
https://doi.org/10.1103/PhysRevLett.95.266403
. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang. K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 033715 (2005).
https://doi.org/10.1063/1.2001146
. U. Russo, D. Ielimini, C. Cagli, A. Lacaita, S. Spiga, C.Wiemer, M. Perego, M. Fanciulli, Electron Devices Meeting, 2007 IEEE International, 775 (2007).
https://doi.org/10.1109/TED.2008.2010584
. B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han, J. Kang, B. Yu, IEEE Electron Device Letters 30, 1326 (2009).
http://ieeexplore.ieee.org/document/5291772/
. S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, Appl. Phys. Lett. 89, 042904 (2006).
https://doi.org/10.1063/1.2234840
. M.J. Rozenberg, I.H. Inoue, M.J. Sánchez, Appl. Phys. Lett. 88, 0033510 (2006).
https://doi.org/10.1016/j.tsf.2004.10.059
. W.Y. Yang, W.G. Kim, S.W. Rhee, Thin Solid Films 517, 967 (2008).
https://doi.org/10.1016/j.tsf.2008.08.184
. C.Y. Lin, D.Y. Lee, S.Y. Wang, C.C. Lin, T.Y. Tseng, Surf. Coat. Technol. 203, 628 (2008).
https://doi.org/10.1016/j.surfcoat.2008.06.133
. C.Y. Lin, C.Y. Wu, C.Y. Wu, C.C. Lin, T.Y. Tseng, Thin Solid Films 516, 444 (2007).
https://doi.org/10.1016/j.tsf.2007.07.140
. X. Cao, X.M. Li, X.D. Gao, Y.W. Zhang, X.J. Liu, Q.Wang, L.D. Chen, Appl. Phys. A 97, 883 (2009).
https://doi.org/10.1007/s00339-009-5351-7
. Xun Cao, Xiaomin Li,Weidong Yu, Xinjun Liu, Xiliang He, Mater. Sci. Eng. B 157, 36 (2009).
https://doi.org/10.1016/j.mseb.2008.12.005
. E. Hernandez-Rodriguez, A. Marquez-Herrera, M. Melendez-Lira, M. Zapata-Torres, Mater. Sci. Eng. B 172, 187 (2010).
https://doi.org/10.1016/j.mseb.2010.05.017
. Y.C. Bae, A.R. Lee, J.S. Kwak, H. Im, Y.H. Do, J.P. Hong, Appl. Phys. A 102, 1009 (2011).
https://doi.org/10.1007/s00339-011-6289-0
. H.Y. Jeong, S.K. Kim, J.Y. Lee, S.Y. Choi, Appl. Phys. A 102, 967 (2011).
https://doi.org/10.1007/s00339-011-6278-3
. Y. Li, G. Zhao, X. Zhou, L. Pan, Y. Ren, J. Sol-Gel Sci. Technol. 56, 61 (2010).
https://doi.org/10.1007/s10971-010-2274-x
. H.Y. Jeong, J.Y. Lee, S.Y. Choi, J.W. Kim, Appl. Phys. Lett. 95, 162108 (2009).
https://doi.org/10.1063/1.3251784
. Y.H. Do, J.S. Kwak, Y.C. Bae, K. Jung, H. Im, J.P. Hong, Thin Solid Films 518, 4408 (2010).
https://doi.org/10.1016/j.tsf.2010.01.016
. R. Dong, D.S. Lee, M.B. Pyun, M. Hasan, H.J. Choi, M.S. Jo, D.J. Seong, M. Chang, S.H. Heo, J.M. Lee, H.K. Park, Hyunsang Hwang, Appl. Phys. A 93, 409 (2008).
https://doi.org/10.1007/s00339-008-4782-x
. H.Y. Jeong, J.Y. Lee, S.Y. Choi, Appl. Phys. Lett. 97, 042109 (2010).
https://doi.org/10.1063/1.3467854
. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85(1986).
https://doi.org/10.1063/1.97359
. S. Gholami, H. Hajghassem, M. Khajeh, IEICE Electron. Express 6, 1325 (2009).
https://doi.org/10.1587/elex.6.1325
. Y. Li, G. Zhao, X. Zhou, L. Pan, Y. Ren, Mat. Sci. Semicond. Process. 15, 37 (2012).
https://doi.org/10.1016/j.mssp.2011.07.001.
. H. Mähne, S. Slesazeck, S. Jakschik, I. Dirnstorfer, T. Mikolajick, Microelectron. Eng. 88, 1148 (2011).
https://doi.org/10.1016/j.mee.2011.03.030
. N.A. Tulina, I.Yu. Borisenko, A.M. Ionov, I.M. Shmyt’ko, Solid State Commun. 150, 2089 (2010).
https://doi.org/10.1016/j.ssc.2010.09.022
. L.W. Feng, Y.F. Chang, C.Y. Chang, T.C. Chang, S.Y. Wang, P.W. Chiang, C.C. Lin, S.C. Chen, S.C. Chen, Thin Solid Films 519, 1536 (2010).
Published
Issue
Section
License
Copyright (c) 2017 Enrique Valaguez Velazquez, Eric Hernandez Rodriguez, Alfredo Marquez Herrera, Miguel Melendez Lira, Martin Zapata Torres

This work is licensed under a Creative Commons Attribution 4.0 International License.
©2025 by the authors; licensee SMCTSM, Mexico. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).