Resumen
Small hexagonal-shaped ZnO Nanorods (ZnO-NRs) were synthesized on PET (Polyethylene terephthalate)/ITO substrates through a conventional wet chemical method assisted by ultrasound using Zn(NO3)2 and hexamethylenetetramine (HMT) as precursors. The reaction was carried out in three steps: i) ZnO seeds synthesis, ii) ZnO seeds deposition, and iii) ultrasound-assisted unidirectional growth of ZnO-NRs. Aligned ZnO-NRs were characterized by HRTEM, SAED, EFSEM, UV-Vis and Raman spectroscopy; their lengths and thicknesses ranged 240 – 350 nm and 25 – 80 nm, respectively on PET/ITO substrates. Results indicated that ZnO-NRs were grown on a 200 nm thick ZnO rigid film formed by a dipcoating method which has brittle nature. It could hinder the use of these substrates in the construction of flexible devices. ZnO-NRs/(PET/ITO) transmits a UV-Vis radiation between 50% and 80%, whose variation depends on the synthesis conditions. Optical band-gap of the synthesized material approximately 3.3 eV is independent on the Nanorods’ dimensions. Experimental and structural details are also discussed in this work.Citas
Z.S. Wang, C.H. Huang, Y.Y. Huang, Y.J. Hou, P.H. Xie, B.W. Zhang, H.M. Cheng, Chem. Mater. 13, 678 (2001).
C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. 15, 838 (2003).
M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113 (2001).
L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).
C. Vargas-Hernandez, F.N. Jimenez-Garcia, J.F. Jurado, V. Henao Granada, Microelectronics Journal 39, 1349 (2008).
F.N. Jiménez-García, D.G. Espinosa-Arbeláez, C. Vargas- Hernández, A. del Real, M.E. Rodríguez-García, Thin Solid Films 519, 7638 (2011).
Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947
J.Y. Park, D.E. Song, S.S. Kim, Nanotechnology 19, 105503 (2008).
S. Chakrabarti, S. Chaudhuri, Mater. Chem. Phys. 87, 196 (2004).
C.X. Xu, X.W. Sun, Appl. Phys. Lett. 83, 3806 (2003).
J.Y. Lao, J.Y. Huang, D.Z.Wang, Z.F. Ren, Nano. Lett. 3, 235 (2003).
P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Science 309, 1700 (2005).
T. Alammar, A-V Mudring , Materials Letters 63, 732 (2009)
N.R. Pandaa, B.S. Acharya, P. Nayakc, Materialss Letters 100, 257 (2013)
J-F Zhou, J. Ao, Y-Y Xia, H-M Xiong, Journal of Colloid and Interface Science 393, 80 (2013).
Y. Peng, J. Ji, X. Zhao, H. Wan, D. Chen, Powder Technology 233, 325 (2013).
K.-S. Kim, H.W. Kim, Phys. B: Condens. Matter 328, 368 (2003).
K. Ogata, K. Maejima, S. Fujita, S. Fujita, J. Cryst. Growth 248, 25 (2003).
Q. Wan, K. Yu, T.H. Wang, Appl. Phys. Lett. 83, 2253 (2003).
J. Grabowska, K.K. Nanda, K. McGlynn, J.P. Mosnier, M.O. Henry, A. Beaucamp, A. Meaney, J. Mater. Sci. Mater. Electron. 16, 397 (2005).
T. Hirate, T. Kimpara, S. Nakamura, T. Satoh, Superlattices Microstruct. 42, 409 (2007)
Dae-Young Chunga, Jingsong Huangb, Donal D.C. Bradleya, Alasdair J. Campbell, Org. Electron. 11, 1088 (2010).
Jingzhen Shao, Fengjuan Liu, Weiwei Dong, Ruhua Tao, Zanhong Deng, Xiaodong Fang, Songyuan Dai, Mater. Lett. 68, 493, (2012).
C.X. Xu, A. Wei, X.W. Sun, Z.L. Dong, J. Phys. D: Appl. Phys. 39, 1690 (2006).
L. Vayssieres, K. Keis, S. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001).
Yan-Xiang Wang, Jian Sun, XueYun Fan, Xi Y, Ceram. Int. 37, 3431 (2011).
D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Physica B: Condensed Matter. 403, 3713 (2008).
Prabhakar Rai, Hyeon-Min Song, Yun-Su Kim, Min-Kyung Song, Pyong-Rok Oh, Jeong-Mo Yoon, Yeon-Tae Yu, Mater. Lett. 68, 90(2012).
Zhenfeng Zhu, Dong Yang, Hui Liu, Adv. Powder Technol, 22, 493 (2011).
M. F. Meléndrez, K. Hanks, Francis Leonard-Deepak, F. Solis-Pomar, E. Martinez-Guerra, E. Pérez-Tijerina, M. José- Yacaman, J. Mater. Sci. 47, 2025 (2012).
F. Solis-Pomar, E. Martinez-Guerra, M.F Meléndrez, E. Pérez-Tijerina, Nanoscale, Res. Lett. 6, 553 (2011)
L. Vayssieres, K. Keis, S. Lindquist, A. Hagfeldt, J. Phys. Chem. B. 105, 3350 (2001).
X.X. Liu, Z.G. Jin, S.J. Bu, J. Zhao, Z.F. Liu., Mater. Lett. 59, 3994 (2005).
H. Zhang, D. Yang, Y.J. Yi, X.Y. Ma, J. Xu, D.L. Que, J. Phys. Chem. B 108, 3955 (2004).
O. Krichershy, J. Stavan, Phys. Rev. Lett. 70 (1993) 1473
J.W. Mullin, Crystallization, third ed, Butterworth/Heinemann, p. 1436 (Oxford, 1997).
Y. Chen, X.L. Xu, G.H. Zhang, H. Xue, S.Y. Ma, Physica E: 42, 1713 (2010).
Hisao Makino, Aki Miyake, Takahiro Yamada, Naoki Yamamoto, Tetsuya Yamamoto, Thin Solid Films, 517, 3138 (2009).
Zhenguo Ji, Qinan Mao, Weiqing Ke, Solid State Communications, 150, 1919 (2010).
T. Ratana, P. Amornpitoksuk, T. Ratana, S. Suwanboon, J. Alloy. Compd, 470, 408 (2009).
Z.T. Chen, L. Gao, J. Cryst. Growth 29, 522 (2006).
C. Bundesmann, N. ashkenou, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003).
C.A. Aguello, D.L. Rousseau, S.P.S. Porto, Phys. Rev. 181, 1351 (1969).
A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. homsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).
J. Zhao, Z.G. Jin, T. Li, X.X. Liu, Z.F. Liu, J. Am. Ceram. Soc. 89, 2654 (2006).
Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001).
C. Bundesmann, N. ashkenou, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003).
C.A. Aguello, D.L. Rousseau, S.P.S. Porto, Phys. Rev. 181, 1351 (1969).
A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Homsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).