Interfacial Analysis of chitosan/bone: cortical and cancellous bone matrices

Authors

  • Christian Vianey Paz Lopez Department of Chemistry Universidad Michoacana de San Nicolás de Hidalgo
  • Salomon Ramiro Vasquez Garcia Department of Chemistry Universidad Michoacana de San Nicolás de Hidalgo
  • Nelly Flores Ramirez Department of Wood Engineering and Technology Universidad Michoacana de San Nicolás de Hidalgo

Keywords:

Chitosan, bone, compatibility, analysis

Abstract

Thermal stability and phase separation of a film on a substrate can be controlled at the interface level by changing the compatibility between both components, which is based on molecular interactions. Thus, in this study chitosan was used as a coating agent due to its superior film-forming properties and multiple molecular interactions with bone. In particular, two types of bone substrates were considered to study the bio-adhesion phenomena: cancellous and cortical bones. Firstly, chitosan/bone samples were prepared by controllable dip-coating method under fixed conditions, and subsequently an experimental investigation was utilized to analyze the interfacial compatibility and interaction between chitosan with the two bone substrates. As a result, Fourier transform infrared spectroscopy (FTIR) data revealed a strong interaction between the chitosan molecules and bones. Meanwhile, by scanning electron microscope (SEM) and microhardness analysis a moderate interfacial compatibility was exhibited. Furthermore, analyses by X-ray diffraction were used to identify the spatial arrangement of chitosan structure on bone, which was increased as a result of the increased acidity of chitosan solution

Author Biographies

  • Christian Vianey Paz Lopez, Department of Chemistry Universidad Michoacana de San Nicolás de Hidalgo
    Department of Chemistry
  • Salomon Ramiro Vasquez Garcia, Department of Chemistry Universidad Michoacana de San Nicolás de Hidalgo
    Department of Chemistry
  • Nelly Flores Ramirez, Department of Wood Engineering and Technology Universidad Michoacana de San Nicolás de Hidalgo
    Department of Wood Engineering and Technology

References

S. Bose, and S. Tarafder, Acta Biomater. 8, 1401 (2012).

http:dx.doi.org/10.1016/j.actbio.2011.11.017

N.H Kelly, J.C. Schimenti, F.P. Ross, M.C.H. Van der Meulen, Bone 68, 1 (2014).

http:dx.doi.org/ 10.1016/j.bone.2014.07.022

S. Tang, B. Tian, Y.J. Guo, Z. Zhu, Y.P. Guo, Surf Coat Tech. 251, 210 (2014).

http:dx.doi.org/10.1016/j.surfcoat.2014.04.028

M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Prog Polym Sci. 36, 981 (2011).

http:dx.doi.org/ 10.1016/j.progpolymsci.2011.02.001

R.A.A. Muzzarelli, Carbohydr Polym. 83, 1433 (2011).

http:dx.doi.org/10.1016/j.carbpol.2010.10.044

J. Berger, M. Reist, O. Felt, R. Gurny, Eur J Pharm Biopharm. 57, 35 (2004).

http:dx.doi.org/10.1016/S0939-6411(03)00160-7

B. Burton, A. Gaspara, D. Josey, J. Tupy, M.D. Grynpas, T.L. Willett, Bone 61, 71 (2014).

http:dx.doi.org/ 10.1016/j.bone.2014.01.006

J. Black, and G. Hastings, “Handbook of biomaterial properties”, Springer Science & Business Media 2013, pp 2-98.

http:dx.doi.org/10.1007/978-1-4615-5801-9

A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K.N. Suarez, L. Moro, J Inorg Biochem. 68, 45 (1997).

http:dx.doi.org/10.1016/S0162-0134(97)00007-X

N. Reznikov, R. Shahar, and S. Weiner, Acta Biomater, 10, 3815 (2014).

http:dx.doi.org/10.1016/j.actbio.2014.05.024.

J.B. Lynch, P.D. Spence, D.E. Baker, T.A. Postlethwaite, J Appl Polym Sci, 71, 319 (1999).

http:dx.doi.org/10.1002/(SICI)1097-4628(19990110)71:2<319::AID-APP16>3.0.CO;2-T

J. Brugnerotto, J. Lizardi, F.M. Goycoolea, W Argüelles-Monal, J Desbrières, M Rinaudo, Polymer 42, 3569 (2001).

http:dx.doi.org/10.1016/S0032-3861(00)00713-8

O. Gunduz, C. Gode, Z. Ahmad, H. Gökçe, M. Yetmez, C. Kalkandelen, Y.M. Sahin, F.N. Oktar, J Mech Behav Biomed Mater, 35, 6 (2014).

http:dx.doi.org/10.1016/j.jmbbm.2014.03.004

A. Pielesz, Spectrochim. Acta Part A Mol. Biomol. 118, 287 (2014).

http:dx.doi.org/10.1016/j.saa.2013.08.056

E. Kusrini, and M. Sontang, Radiat Phys Chem. 81, 118 (2012).

http:dx.doi.org/10.1016/j.radphyschem.2011.10.006

J. Safari, and L. Javadian, Ultrason Sonochem. 22, 341 (2015).

http:dx.doi.org/10.1016/j.ultsonch.2014.02.002

Downloads

Published

2016-09-15

Issue

Section

Research Papers

How to Cite

Interfacial Analysis of chitosan/bone: cortical and cancellous bone matrices. (2016). Superficies Y Vacío, 29(3), 70-73. https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/35