Compounds of chitosan/Ag nanoparticles: conductivity and relaxation mechanisms and their relation with their macroscopic properties

Authors

  • J. Betzabe González Campos Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico Biológicas
  • E. del Río Rosa Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico Biológicas
  • E. Prokhorov Cinvestav Unidad Querétaro
  • J. G. Luna Bárcenas Cinvestav Unidad Querétaro

Keywords:

Chitosan, Silver nanoparticles, Bionanocomposite, Relaxation processes, Conductivity.

Abstract

The aim of this work is to investigate the conductivity mechanisms and relaxation properties of chitosan-silver nanoparticle (AgnP´s) bionanocomposites. Wet composites show the ?-relaxation process related to the glass transition phenomena, whereas, in dry composites (moisture content < 0.2 %), the glass transition disappeared. DC conductivity has shown that the dry composites exhibit a percolation threshold at 2 wt% of AgnP’s. And a 2-D hopping conductivity is observed in the 2-70°C temperature range for dry composites with wt% of AgnP’s < 2wt%. Conductivity and relaxation time temperature dependencies disclose the ?-relaxation associated with a migration property of movable hydrogen ions. This relaxation process is observed in all nanocomposites in the 70°C-180°C temperature range.

References

. D. Wei, W. Sun, W. Qian, Y. Ye, X. Mac. Carbohydrate Research, 344, 2375, (2009).

. N. Sanvicens, C. Pastells, N. Pascual, M.-Pilar Marco. Trends in Analytical Chemistry, 25, 1243, (2009).

. J. W. Rhim, S. I. Hong, H. M. Park. J. Agric. Food Chem., 54, 5814, (2006).

. J. B. González-Campos, E. Prokhorov, G. Luna-Bárcenas, A. Mendoza-Galván, I. C. Sanchez, S. M. Nuño-Donlucas, B. García-Gaytan, Y. Kovalenko. J. Polym. Sci. B, 47, 932, (2009).

. Y. Wan, K. A. M. Creber, B. Peppley, V. T. Bui. Polymer, 44, 1057, (2003).

. J. B. González-Campos, E. Prokhorov, G. Luna-Bárcenas, A. Fonseca-García, I. C. Sanchez.J. Polym. Sci. B, 47, 2259, (2009).

. G. G. Raju. Dielectrics in Electrical Fields. Marcel Dekker Inc.: (New York, 2003).

. G. M. Tsangaris, G. C. Psarras, N. Kouloumbi. J. Mat. Sci., 33, 2027, (1998).

. M. Köhler, P. Lunkenheimer, A. Loidl. Eur Phys J E. 27, 115, (2008).

. A. Heilmann. Polymer films with embedded metal nanoparticles: Springer (2003).

. J. Fraysse J. Planes., Phys. Stat. Sol. (B) 218, 273 (2000).

. Kirkpatrick S. Rev. Mod. Phys. 45, 574, (1973).

. D. Stauffer, A. Aharony. Introduction to percolation theory. Taylor & Francis: (London 1994).

. F. Mott. Metal–insulator transitions. Taylor & Francis: London (1990).

. G.C. Psarras. Composites: Part A, 37, 1545, (2006).

. S. Capaccioli, M. Lucchesi, P. A. Rolla, G. Ruggeri. J. Phys.: Condens. Matter., 10 5595, (1998).

. V.R. Nikitenko, A.R. Tameev, A.V. Vannikov. Semiconductors, 44, 211, (2010).

. F. Kremer, A. Schonhals (Eds). Broad Dielectric Spectroscopy, Springer-Verlag, (Berlin 2003).

. Einfeldt J, Meibner D, Kwasniewski A. J Non-cryst solids, 320, 40, (2003).

Published

2012-03-15

How to Cite

González Campos, J. B., del Río Rosa, E., Prokhorov, E., & Luna Bárcenas, J. G. (2012). Compounds of chitosan/Ag nanoparticles: conductivity and relaxation mechanisms and their relation with their macroscopic properties. Superficies Y Vacío, 25(1), 43–48. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/227

Issue

Section

Research Papers