Abstract
We present the preliminary theoretical-experimental study of the structural properties for rare earths: hydroxide, hydroxycarbonate and Oxide; Sm(OH)3, NdOHCO3, CeO2, and Ho2O3 powders, respectively. In the experimental preparation, Chemical Bath Deposition (CBD) technique is applied at ~20 ±2 °C. In our experimental conditions, the parameters of crystal growth are: concentration of progenitor reagents, stirring, pH and temperature, remain constant. The chemical kinetics of crystal growth is systematically examined at key synthesis steps, considering the physicochemical and electrodynamic parameters: ionic radii, electron affinity, and hydration enthalpy of the rare earth (Sm3+, Nd3+, Ce3+, and Ho3+) cation. The main objective of this report is to investigate the theoretical-experimental correlation associated with the experimental conditions and the physicochemical parameters in the synthesis of hydroxide, hydrocarbonates and oxide. The crystallographic study of the powders is carried out using the X-ray Diffraction (XDR) technique. Analyzing the crystal phase, it is found that Sm(OH)3 and NdOHCO3 present hexagonal crystal phase, CeO2 and Ho2O3 are identified cubic crystal structure. The quantified grain size turns out to be: Sm(OH)3: ~1.40 - 2.03 nm, NdOHCO3: ~14.33 - 22.25 nm; CeO2: ~1.65 - 3.05 nm; and Ho2O3: ~3.72 - 6.08 nm. The Dislocation density (?) is: Sm(OH)3: ~2.47 - 5.10×1017 lines/m2; NdOHCO3: 2.01 - 4.68×1015 lines/m2; CeO2: 1.07 - 3.67×1017 lines/m2.
References
. A. Escudero, A.I. Becerro, C.C. Carrión, N.O. Núñez, M.V. Zyuzin, M. Laguna, D.G. Mancebo, M. Ocaña, W.J. Parak, Nanophotonics 6, 881 (2017).
http://dx.doi.org/10.1515/nanoph-2017-0007.
. M. Shafiq, I. Ahmad, S.J. Asadabadi, J. Appl. Phys. 116, 103905 (2014).
https://doi.org/10.1063/1.4894833
. P.C. de S. Filho, J.F. Lima, O.A. Serra, J. Braz. Chem. Soc. 26, 2471 (2015).
http://dx.doi.org/10.5935/0103-5053.2015032.
. N. Baig, I. Kammakakam, W. Falath, Mater. Adv. 2, 1821 (2021).
http://dx.doi.org/10.1039/d0ma00807a
. Z. Gao, S. Rohani, J. Gong, J. Wang, Engineering 3, 343 (2017).
https://doi.org/10.1016/J.ENG.2017.03.022
. Z. Gao, X. Liu, C. Zhang, Y. Ren, Cryst. Growth Des. 22, 2050 (2022).
https://doi.org/10.1021/acs.cgd.1c01267
. O. Portillo Moreno, R. Gutiérrez Pérez, R. Palomino Merino, M. Chávez Portillo, G. Hernández Téllez, E. Rubio Rosas, M. Zamora Tototzintle, Optik 148, 142 (2017).
http://dx.doi.org/10.1016/j.ijleo.2017.08.133
. O. Portillo Moreno, R. Gutiérrez Pérez, R. Palomino Merino, G. Hernández Téllez, M. Chávez Portillo, M.N. Márquez Especia, E. Rubio Rosas, H. Azucena Coyotécatl, Optik 130, 1045 (2017).
http://dx.doi.org/10.1016/j.ijleo.2016.11.109
. M. Powell, L.D. Sanjeewa, C.D. McMillen, K.A. Ross, C.L. Sarkis, J.W. Kolis, Cryst. Growth Des. 19, 4920 (2019).
https://doi.org/10.1021/acs.cgd.8b01889
. I. Milisavljevic, Y. Wu, BMC Mater. 2, 2 (2020).
https://doi.org/10.1186/s42833-020-0008-0
. L. Spiridigliozzi, C. Ferone, R. Cioffi, M. Bortolotti, G. Dell’Agl, Materials 12, 2062 (2019).
http://dx.doi.org/10.3390/ma12132062
. P.Y.A. Guillén, O.V. Kharissova, R. Selvas, B.I. Kharisov, Curr. Nanomater. 4, 39 (2019).
http://dx.doi.org/10.2174/2405461504666190510122723
. K. Takagi, Y. Hirayama, S. Okada, W. Yamaguchi, K. Ozaki, Sci. Technol. Adv. Mate. 22, 150 (2021).
https://doi.org/10.1080/14686996.2021.1875791
. O. Portillo Moreno, R. Gutiérrez Pérez, R. Palomino Merino, M. Chávez Portillo, M.N. Márquez Specia, M. Hernández Hernández, S. Solis Sauceda, E. Rubio Rosas, Optik 135, 70 (2017).
http://dx.doi.org/10.1016/j.ijleo.2017.01.077
. M. Chávez Portillo, O. Portillo Moreno, E. Rubio Rosas, M. Zamora Tototzintle, R. Palomino Merino, G. Hernández Téllez, R. Gutiérrez Pérez, Mater. Lett. 151, 134 (2015).
http://dx.doi.org/10.1016/j.matlet.2015.03.042
. O. Portillo Moreno, R. Gutiérrez Pérez, M. Chávez Portillo, M.E. Araiza García, G.E. Moreno, S. Cruz Cruz, E. Rubio Rosas, M. Hernández Lazcano, Optik 157, 388 (2018).
https://doi.org/10.1016/j.ijleo.2017.11.036
. L. Serrano de la Rosa, M. Chávez Portillo, M.A. Mora-Ramírez, V. Carranza Téllez, M. Pacio Castillo, H. Juárez Santiesteban, A. Cortés Santiago, O. Portillo Moreno, Optik 216, 164875 (2020).
https://doi.org/10.1016/j.ijleo.2020.164875
. S.H. Anastasiadis, K. Chrissopoulou, E. Stratakis, P. Kavatzikidou, G. Kaklamani, A. Ranella, Nanomater. 12, 552 (2022).
https://doi.org/10.3390/nano12030552
. R. Gutiérrez Pérez, O. Portillo Moreno, M. Chávez Portillo, L. Chaltel Lima, R. Agustín Serrano, E. Rubio Rosas, M. Zamora Tototzintle, Mater. Lett. 160, 488 (2015).
http://dx.doi.org/10.1016/j.matlet.2015.08.034
. O. Portillo Moreno, R. Gutiérrez Pérez, R. Palomino Merino, H. Santiesteban Juárez, S. Tehuacanero Cuapa, E. Rubio Rosas, Mater. Sci. in Semicon. Proces. 72, 22 (2017).
http://dx.doi.org/10.1016/j.mssp.2017.09.012
. R.P. Sharma, R. Bala, R. Sharma, U. Rychlewska, B. War?ajtis, J. of Fluorine Chem. 126, 967 (2005).
https://doi.org/10.1016/j.jfluchem.2005.04.004
. P.R. Varadwaj, I. Cukrowski, H.M. Marques, J. Phys. Chem. A 112, 10657 (2008).
https://doi.org/10.1021/jp803961s
. E. Brini, C.J. Fennell, M.F. Serra, B.H. Lee, M. Luksic?, K.A. Dill, Chem. Rev. 117, 12385 (2017).
http://dx.doi.org/10.1021/acs.chemrev.7b00259
. O. Portillo Moreno, O.R. Portillo Araiza, M. Chávez Portillo, V. Carranza Téllez, M.A. Vicencio Garrido, Optik 251, 168470 (2022).
https://doi.org/10.1016/j.ijleo.2021.168470
. M. Misin, M.V. Fedorov, D.S. Palmer, J. Phys. Chem. B 120, 975 (2016).
https://doi.org/10.1021/acs.jpcb.5b10809
. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).
https://doi.org/10.1107/S0567739476001551
. J.M. Bijvoet, W.G. Burgers, G. Hägg, Atomic (ionic) Radii and Building Principles. In: Early Papers on Diffraction of X-rays by Crystals, Eds. J.M. Bijvoet, W.G. Burgers, G. Hägg (Springer, Boston, 1972).
https://doi.org/10.1007/978-1-4615-6878-0_2
. J.G. Kang, B.K. Min, Y. Sohn, J. Mater. Sci. 50, 1958 (2015).
https://doi.org/10.1007/s10853-014-8760-8
. F.L. Leite, C.C. Bueno, A.L.D. Róz, E.C. Ziemath, O.N. Oliveira Jr., Int. J. Mol. Sci. 13, 12773 (2012).
http://dx.doi.org/10.3390/ijms131012773
. P.O. Bedolla, G. Feldbauer, M. Wolloch, S.J. Eder, N. Do?rr, P. Mohn, J. Redinger, A. Vernes, J. Phys. Chem. C 118, 17608 (2014).
http://dx.doi.org/10.1021/jp503829c
. D. Hull, D.J. Bacon, Introduction to dislocations, 4th ed. (Butterworth-Heinemann, 2001).
https://doi.org/10.1016/B978-0-7506-4681-9.X5000-7
. X. Shang, W. Lu, B. Yue, L. Zhang, J. Ni, Y. lv, Y. Feng, Cryst. Growth Des. 9, 1415 (2009).
https://doi.org/10.1021/cg800730s
. M.A. Boles, M. Engel, D.V. Talapin, Chem. Rev. 116, 11220 (2016).
https://doi.org/10.1021/acs.chemrev.6b00196
. M. Chávez Portillo, O. Portillo Moreno, M.A. Mora-Ramírez, H. Juárez Santiesteban, C. Bueno Avendaño, Y. Panecatl Bernal, Optik 248, 168178 (2021).
https://doi.org/10.1016/j.ijleo.2021.168178
. P. Naumov, D.P. Karothu, E. Ahmed, L. Catalano, P. Commins, J.M. Halabi, M.B.A. Handawi, L. Li, J. Am. Chem. Soc. 142, 13256 (2020).
https://doi.org/10.1021/jacs.0c05440
. G. Bianchi, S. Longhi, R. Grandori, S. Brocca, Int. J. Mol. Sci. 21, 6208 (2020).
http://dx.doi.org/10.3390/ijms21176208
. Y. Fan, C. Miao, Y. Yue, W. Hua, Z. Gao, Catalysts 11, 388 (2021).
https://doi.org/10.3390/catal11030388
. M. Tan, J. Mei, J. Xie, Crystals 11, 68 (2021).
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Array