Surface micromachining of a micro electromechanical inertial transducer based on commercially available Floating Gate Transistor technology
DOI:
https://doi.org/10.47566/2018_syv31_1-030048Keywords:
FGMOS, surface micromachining, inertial sensorAbstract
This work presents the results of different surface micromachining processes done on a chip from On Semiconductor 0.5 µm commercially available CMOS technology. The intended objective is to fabricate a MEMS inertial transducer in a monolithic substrate, as the electronics for signal processing are based on a Floating Gate MOS transistor, fully integrated in the electromechanical structure. According to the available layers and design rules from the foundry, an inertial sensor chip was designed and fabricated, except the last post–processing step, i.e., the removal of the sacrificial layer and thus releasing the inertial structure based on a surface micromachining process, allowing the completed device to behave as designed.References
. Z. Mohammed, G. Dushaq, A. Chatterjee, M. Rasras. IEEE 17th EuroSimE, 43 (2016).
https://doi.org/10.1109/EuroSimE.2016.7463335
. R.H. Han, J.Y. Wang, M.H. Xu, H. Guo, IEEE, SPAWDA 15 (2016).
https://doi.org/10.1109/SPAWDA.2016.7829958
. Y. Xu, L. Zhao, Z. Jiang, J. Ding, N. Peng, Y. Zhao, Sensors-Basel. 16, 210 (2016).
https://doi.org/10.3390/s16020210
. Z. Xudong, P. Thiruvenkatanathan, A.A. Seshia, J Microelectromech S. 23, 768 (2014).
https://doi.org/10.1109/JMEMS.2014.2319196
. O. Brand, in: CMOS-MEMS, Eds. H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J.K. Korvink, O. Tabata (WILEY-VCH, 2005) pp. 1-67.
https://doi.org/10.1002/9783527616718
. M. Haris, Q. Hongwei, IEEE, NEMS 42 (2010).
https://doi.org/10.1109/NEMS.2010.5592224
. G.S. Abarca-Jiménez, M.A. Reyes-Barranca, S. Mendoza-Acevedo, J.E. Munguía-Cervantes, M.A. Alemán-Arce, Microsyst Technol. 22, 767 (2016).
https://doi.org/10.1007/s00542-015-2429-3
. G.S. Abarca Jiménez, M.A. Reyes Barranca, S. Mendoza Acevedo, J.E. Munguía Cervantes, M.A. Alemán Arce, Microsyst Technol. 21, 1353 (2015).
https://doi.org/10.1007/s00542-014-2274-9
. G.K. Fedder, IEEE, SENSORS. 37 (2005).
https://doi.org/10.1109/ICSENS.2005.1597652
. M.J. Madou, in: Manufacturing Techniques for Microfabrication and Nanotechnology, 3nd ed. (CRC-Press. 2011)
ISBN: 00209781420055191
. K.R. Williams, K. Gupta, M. Wasilik, J Microelectromech S. 12, 761 (2003).
https://doi.org/10.1109/jmems.2003.820936
. K.R. Williams, R. S. Muller, J Microelectromech S. 5, 256 (1996).
https://doi.org/10.1109/84.546406
. S. Wolf, R.N. Tauber, in: Silicon Processing for the VLSI Era: Process Technology, 2nd Ed. (Lattice. Press, 2000).
ISBN: 978-0-961-67216-4
https://openlibrary.org/works/OL14992745W/Silicon_Processing_for_the_VLSI_Era_Vol._1
. N.H. Ghazali, H. Soetedjo, N.A. Ngah, A. Yusof, A. Dolah, M.R. Yahya. IEEE International Conference on Semiconductor Electronics. 160 (2008).
https://doi.org/10.1109/SMELEC.2008.4770409
. S.A. Guerrera, A.I. Akinwande, Nanotechnology. 27, 295 (2016).
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 The authors; licensee SMCTSM

This work is licensed under a Creative Commons Attribution 4.0 International License.
©2025 by the authors; licensee SMCTSM, Mexico. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).