A modular and generic monolithic integrated MEMS fabrication process

Autores/as

  • Mónico Linares Aranda Lab. de Innovación de Sistemas Micro-Electromecánicos, Instituto Nacional de Astrofísica, Óptica y Electrónica
  • W. Calleja Arriaga Lab. de Innovación de Sistemas Micro-Electromecánicos, Instituto Nacional de Astrofísica, Óptica y Electrónica
  • A. Torres Jacome Lab. de Innovación de Sistemas Micro-Electromecánicos, Instituto Nacional de Astrofísica, Óptica y Electrónica
  • C.R. Báez Álvarez Lab. de Innovación de Sistemas Micro-Electromecánicos, Instituto Nacional de Astrofísica, Óptica y Electrónica

DOI:

https://doi.org/10.47566/2017_syv30_1-030030

Palabras clave:

MEMS, CMOS, Process Simulation, Surface Micromachining, Test chip.

Resumen

A modular and generic, monolithic integrated MEMS fabrication process is presented to integrate microelectronics (CMOS) with mechanical microstructures (MEMS). The proposed monolithic integrated fabrication process is designed using an intra-CMOS approach (to fabricate the mechanical microstructures into trenches without the need of planarization techniques) and a CMOS module (to fabricate the electronic devices) with a 3 ?m length as minimum feature. The microstructures module is made up to three polysilicon layers, and aluminum as electrical interconnecting material. From simulation results, using the SILVACO® suite (Athena and Atlas frameworks), no significant degradation on the CMOS performance devices was observed after MEMS manufacturing stage; however, the thermal budget of the modules plays a crucial role, because it set the conditions for obtaining the complete set of devices fabricated near their optimal point. Finally, to evaluate and to support the development of the proposed integrated MEMS process, a modular test chip that includes electrical test structures, mechanical test structures, interconnection reliability test structures and functional micro-actuators, was also designed.

Biografía del autor/a

Mónico Linares Aranda, Lab. de Innovación de Sistemas Micro-Electromecánicos, Instituto Nacional de Astrofísica, Óptica y Electrónica

INAOE

Citas

. Sandia Lab’s, MEMS Video & Image Gallery (2016).

http://www.sandia.gov/mstc/mems_info/movie_gallery.html

. H. Baltes, O. Brand, G.K. Fedeer, in: CMOS-MEMS: Advanced Micro and Nanosystems, Vol. 2 (Wiley & Sons, 2005).

http://dx.doi.org/10.1002/9783527616718.fmatter

. A.C. Fischer, F. Forsberg, M. Lapisa, S.J. Bleiker, G. Stemme, N. Roxhed, F. Niklaus, Microsystems & Nanoengineering Journal, 1 (2015).

http://dx.doi.org/10.1038/micronano.2015.5

. P. Mannion, Advances make MEMS sensors easier to integrate (2016).

http://www.edn.com/electronics-blogs/sensor-ee-perception/4441464/Advances-make-MEMS-sensors-easier-to-integrate

. Laboratorio de innovación en MEMS, Instituto Nacional de Astrofísica Óptica y Electrónica, México (2017).

http://www-elec.inaoep.mx/lnn/estructura/LIMEMS.php

. D. Díaz, F.J. Quiñones, C. Zuñiga, J. Molina, M. Linares, P. Rosales, A. Torres-Jacome, C. Reyes, W. Calleja, 13th World Congress in Mechanism and Machine Science, 1 (2011).

https://www.europeana.eu/portal/es/record/2020801/dmglib_handler_docum_22640009.html

. F. Coyotl Mixcoatl, A. Torres Jacome, 6th International Caribbean Conference on Devices, Circuits and Systems, 359 (2006).

http://dx.doi.org/10.1109/ICCDCS.2006.250887

. F.J. Quiñones-N, D. Diaz-A, W. Calleja-A, F.J. De la Hidalga-W, O. Malik, C. Reyes-B, J. Molina-R, M. Moreno-M, C. Zúñiga-I, P. Rosales-Q, International Caribbean Conference on Devices, Circuits and Systems, 1 (2014).

http://dx.doi.org/10.1109/ICCDCS.2014.7016162

. D. Díaz Alonso, M. Sc. Thesis (INAOE, 2010).

https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/501/1/DiazAD.pdf

. C.R. Báez Álvarez, Ph.D. Thesis (INAOE, 2016).

https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/346/1/BaezAlCR.pdf

. Athena User’s Manual. Silvaco Inc. (2013).

https://calculatelca.com/wp-content/uploads/2013/11/IE4B_User_Guide_Nov2013.pdf

. H. Qu, Micromachines 7, 1 (2016).

http://dx.doi.org/10.3390/mi7010014

. F.J. Quiñones-N, F.J. De la Hidalga-W, M. Moreno, J. Molina, C. Zúñiga, W. Calleja, Results Phys. 4, 119 (2014).

http://dx.doi.org/10.1016/j.rinp.2014.07.007

. O. Brand, Proc. IEEE 94, 1160 (2006).

https://dx.doi.org/10.1109/JPROC.2006.873618

. J. De Guzman Venezuela, J.A. Amorsolo, Thermal stability study on titanium disilicide (TiSi2) thin films with titanium nitride (TiN) capping, Philippine Engineering Journal 23, 49 (2002).

http://journals.upd.edu.ph/index.php/pej/article/view/2379/2263

. K. Sakamoto, K. Nishi, J. Appl. Phys. 61, 1986 (1987).

http://dx.doi.org/10.1063/1.338089

. S. Walwadkar, P.W. Farrell, L.E. Felton, J. Cho, Proceed. SPIE 5288, 847 (2003).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.1974&rep=rep1&type=pdf

. X. Zhang, S. Park, M.W. Judy, J. Microelectromech. Syst. 16, 639 (2007).

http://dx.doi.org/10.1109/JMEMS.2007.897088

. J. Roberts, S. Hussain, M.K. Rahim, M. Motalab, J.C. Suhling, R.C. Jaeger, P. Lall, R. Zhang, 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic systems, 1 (2010).

http://dx.doi.org/10.1109/ITHERM.2010.5501285

. R. Ghodssi, P. Lin, MEMS Materials and Processes Handbook (Springer, 2011).

http://www.springer.com/us/book/9780387473161

. M.G. Buehler, Solid State Technol. 22, 89 (1979).

http://electroiq.com/archives/

Publicado

2017-11-26

Cómo citar

Linares Aranda, M., Calleja Arriaga, W., Torres Jacome, A., & Báez Álvarez, C. (2017). A modular and generic monolithic integrated MEMS fabrication process. Superficies Y Vacío, 30(3), 30–39. https://doi.org/10.47566/2017_syv30_1-030030

Número

Sección

Artículos de Investigación