Synthesis of CdTe quantum dots by means of laser ablation of solids in liquids

Authors

  • M. A. Camacho López Laboratorio de Fotomedicina, Biofotónica y Espectroscopia Láser de Pulsos Ultracortos, Facultad de Medicina, Universidad Autónoma del Estado de México
  • M. Camacho López Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Facultad de Química Universidad Autónoma del Estado de México
  • D. Reyes Contreras Facultad de Ciencias, Universidad Autónoma del Estado de México
  • M. Mayorga Rojas Facultad de Ciencias, Universidad Autónoma del Estado de México
  • L. E. Díaz Sánchez Facultad de Ciencias, Universidad Autónoma del Estado de México
  • A. Reyes Contreras Facultad de Ciencias, Universidad Autónoma del Estado de México
  • A. Arrieta Castañeda Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa
  • R. Vilchis Nestor Centro Conjunto de Investigación en Química Sustentable, UAEMex-UNAM
  • S. Camacho López Centro de Investigación Científica y de Educación Superior de Ensenada

Keywords:

Quantum dots, Cadmium Telluride, Fotoluminescence.

Abstract

In this paper we report results of the characterization of quantum dots (QDs) in acetone solution obtained by laser ablation of a cadmium telluride (CdTe) target. The laser ablation of CdTe was carried out by using pulses of 30 ps from a Nd:YAG laser. With the aim of varying the concentration of QDs in the solution, samples at different irradiation times were obtained. CdTe-colloidal solutions were characterized by UV-Vis and photoluminiscence spectroscopy. The size and shape of the quantum dots were obtained by transmission electron microscopy (TEM, HRTEM), showing spherical geometry nanostructures with a size distribution within a range of 4-200 nm, (average diameter of 6 nm. The photoluminescence spectra of CdTe quantum dots solutions show a broad band emission centered at 488 nm when the samples are excited 367.5 nm.

References

X L Huang, Z Labadi, A Hammiche and A Krier; J. Phys. D: vAppl. Phys;. 35, 3091 (2002).

A. P. Alivisatos; J. Phys. Chem.; 100, 13226 (1996).

Jianniao Tian, Rongjun Liu, Yanchun Zhao, Qing Xu, Shulin Zhao; J. Colloid Interface Sci.; 336, 504 (2009).

Pingping Li, Shaopu Liu, Shuguang Yan, Xiaoqing Fan, Youqiu He; Colloids and Surfaces A: Physicochem. Eng. Aspects; 392, 7 (2011).

Murray CB, Nirmal M, Norris DJ, Bawendi; Z. Phys. D: At., Mol. Clusters; 26; 231 (1993).

Arup Neogi; IEEE Trans. Nanotech.; 2, 10 (2003).

Takeshi Tsuji, Kenzo Iryo, Yukio Nishimura, Masaharu Tsuji; J. Photochem. Photobiol. A: Chem.; 145, 201 (2001).

A. L. González, C. Noguez, and A. S. Barnard; J. Phys. Chem. C; 116, 14170 (2012).

J. Rzeszutek, M. Oszwaldowski, V. Savchuk; Nucl. Instr. and Meth.; 266, 4766 (2008).

K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov, A.G. VitukhnovskyK; Chem. Phys. Lett.; 366, 357 (2002).

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov; J. Opt. A, Pure Appl. Opt.; 5, 409 (2003).

R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda; Appl. Phys. B; 80, 595 (2005).

Grigory Tikhomirov, Sjoerd Hoogland, P. E. Lee, Armin Fischer, Edward H. Sargent and Shana O. Kelley; Nature Nanotech.; 6, 485 (2011).

Eve Dumas, Cherry Gao, Diana Suffern, Stephene E. Bradforth, Nada M. Dimitrijevic and Jay L. Nadeau; Environ. Sci. Technol.; 44, 1464 (2010).

Brett W. Garner, Tong Cai, Zhibing Hu, Moon Kim, and Arup Neogi; Appl. Phys. Express; 2, 075001 (2009).

V. M. Fthenakis, S. C. Morris, P. D. Moskowitz, D. L. Morgan; Prog. Photovolt. Res. Appl.; 7, 489 (1999).

Ting-Ting Fang, Xi Li a,⇑, Qi-Sui Wang, Zhi-Jun Zhang, Peng Liu, Chao-Can Zhang; Toxicol. Vitro; 26(7), 1233-9 (2012).

Somesree Ghosh Mitra, Tong Cai, David Diercks, Zhibing Hu, James Roberts, Jai Dahiya, Nathaniel Mills, DiAnna Hynds and Santaneel Ghosh; Polymers; 3, 1243 (2011).

C. M. Doudna, M. F. Bertino Frank D. Blum, A. T. Tokuhiro,DebduttaLahiri-Dey,‖ Soma Chattopadhyay, and Jeff Terry; J. Phys. Chem. ; 107, 2966 (2003).

Paul M. Winkler, Gerhard Steiner, AronVrtala, Hanna Vehkamäki, MadisNoppel, Kari E. J. Lehtinen, Georg P. Reischl, Paul E. Wagner and MarkkuKulmala; Science; 319, 1374 (2008).

Anne Hahn, Stephan Barcikowski, Boris N. Chichkov; J. Laser Micro Nanoen.; 3, 73 (2008).

Manish Kumar Singh, Mohan Chandra Mathpal, Arvind Agarwal; Chem. Phys. Lett.; 536, 87 (2012).

Fumitaka Mafuné, Jun-ya Kohno, Yoshihiro Takeda, and Tamotsu Kondow; J. Phys. Chem. B; 10, 9111 (2000).

Peisheng Liu, Weiping Cai, and Haibo Zeng; J. Phys. Chem. C; 11, 3261 (2008).

N. G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R. J. Potter, M. Sharp, G. Dearden, and K. G. Watkins; Appl. Phys. Lett.; 95, 033302 (2009).

N. G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R. J. Potter, M. Sharp, P. French, G. Dearden and K. G. Watkins; EPL; 84, 47001 (2008).

Sander F. Wuister, Ingmar Swart, Floris van Driel, Stephen G. Hickey, and Celso de Mello Donega; Nano Lett.; 3, 503 (2003).

Albert A. Ruth, John A. Young; Colloids and Surfaces A: Physicochem. Eng. Aspects; 279, 121 (2006).

N. Abbas Shah, A. Ali, Z. Ali, A. Maqsood, A.K.S. Aqili; J. Cryst. Growth; 284, 477 (2005).

Downloads

Published

2014-09-15

Issue

Section

Research Papers

How to Cite

Synthesis of CdTe quantum dots by means of laser ablation of solids in liquids. (2014). Superficies Y Vacío, 27(3), 93-97. https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/142