Effect of sintering temperature on the structure and mean crystallite size of Zn1-xCoxO (x = 0.01 – 0.05) samples
PDF

Keywords

ZnO
Sol-gel method
X ray diffraction
Raman spectroscopy

How to Cite

Acosta Humánez, F., Almanza, O., & Vargas Hernández, C. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1-xCoxO (x = 0.01 – 0.05) samples. Superficies Y Vacío, 27(2), 43-48. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/134

Abstract

In this work, powders were prepared Zn1-xCoxO (0.00 ? x ? 0.05) at temperatures of calcination of 773, 823, and 873 K by sol gel methods (citrate route). In the XRD patterns, all the observed diffraction peaks could be indexed to ZnO wurtzite structure, and no other impurity phase was found, leading to the conclusion that the Co ions in fact entered into ZnO crystal. Rietveld analysis shows that all samples have a hexagonal wurtzite structure with mean lattice constants a = 3.2507 A? and c = 5.2073 A?, and that no important changes of the lattice parameters were observed as a consequence of Co doping or temperature of calcination. The average crystallite size was measured using Scherrer’s method, and the results show that when Co concentration increased from 0 to 5%, crystallite size varied depending on the sample calcination temperature (Tc). In general, the lower the Tc, the higher the crystallite size, and at a particular Tc, the higher the Co concentration, the higher the crystallite size. The last one suggests the promotion of crystal growth as a result of Co doping in ZnO at least for the synthesis method used here. Raman spectroscopy results showed an increase of the defect concentration as a consequence of an increase in Co contents.
PDF

References

Y. P. Zhang, S.-S. Yan, Y. Liu, M.-J. Ren, Y. Fang, Y. X. Chen, G. L. Liu, L. M. Mei, J. P. Liu, J. H. Qiu, S. Y. Wang, L. Y. Chen, Appl. Phys. Lett. 89, 045101 (2006).

Y. Z. Liu, Q. Y. Xu, H. Schmidt, L. Hartmann, H. Hochmuth, M. Lorenz, M. Grundmann, X. D. Han, and Z. Zhang, Appl. Phys. Lett. 90, 154101 (2007).

G. Lawes, A. S. Risbud, A. P. Ramirez, R. Seshadri, Phys. Rev. B71, 045201 (2005).

J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Mater. 4, 173 (2005).

D. A. Guzmán-Embús, M. Orrego Cardozo, and C. Vargas- Hernández, Journal of Applied Physics 114, 194704 (2013).

S. Maensiri, J. Sreesongmuang, C. Thomas, J. Klinkaewnarong, Journal of Magnetism and Magnetic Materials 301, 422 (2006).

F. Acosta-Humánez, R. Cogollo Pitalúa, O. Almanza, Journal of Magnetism and Magnetic Materials 329, 39 (2013).

A. J. Reddy, M. K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J. L. Rao, B. M. Nagabhushana, Journal of Alloys and Compounds 509, 5349 (2011).

A. J. Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, C. Shivakumara, B.M. Nagabhushana, R.P.S. Chakradhar Spectrochimica Acta Part A 81, 53 (2011).

M. F. Melendrez, C. Vargas-Hernández, Superficies y Vacío 26, 100 (2013).

J.H. Yang, L.Y. Zhao, X. Ding, L.L. Yang, Y.J. Zhang, Y.X. Wang, H.L. Liu, Materials Science and Engineering B 162, 143 (2009).

C. Song, K.W. Geng, F. Zeng, X.B. Wang, Y.X. Shen, F. Pan, Y.N. Xie, T. Liu, H.T. Zhou, Z. Fan, Phys. Rev. B 73 024405 (2006).

P. Sati, R. Hayn, R. Kuzian, S. Régnier, S. Schäfer, A. Stepanov, C. Morhain, C. Deparis, M. Läugt, M. Goiran, Z. Golacki, Physical Review Letters 96, 017203 (2006).

M. Bouloudenine, N. Viart, S. Colis, J. Kortus, A. Dinia, Applied Physics Letters 87, 052501 (2005).

M. M. Can, T. Firat, Şadan Özcan, J Mater Sci 46, 1830 (2011).

K. Ramakanth, Basics of X-ray Diffraction and its Application, I.K. International Publishing House Pvt. Ltd., (New Delhi, 2007).

M. Arshad, A. Azam, A. S. Ahmed, S. Mollah, A. H. Naqvi, Journal of alloys and Compounds 509, 8378 (2011).

Y. Zou, Z. Huang, Y. Wang, X. Liao, G. Yin, J. Gu, Colloids and Surfaces B 102, 29 (2013).

Y. Caglar, Journal of alloys and Compounds 560, 181 (2013).

M. G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Materials Letters 65, 1797 (2011).

M. Nirmala, A. Anukaliani, Physica B 406, 911 (2011).

Y. Huaming, N. Sha, Preparation and characterization of Co-doped ZnO nanomaterials, Mater. Chem. Phys. 114, 279 (2009).

T.C. Damen, S.P.S. Porto, B. Tell, Raman Effect in Zinc Oxide, Phys. Rev. 142, 570 (1966).

A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemme, R. Seshadri, Phys. Rev. 68, 205202 (2003).

L. B. Duan, G. H. Rao, J. Yu, Y. C. Wang, Solid State Commun. 145, 525 (2008).

Z. Zhang, F. Zhou, E.J. Lavernia, Metallurgical and Materials Transactions A 34A, 1349 (2003).

R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, Solid State Communications 149, 1919 (2009).

A. K. Zak, R. Yousefi, W. H. Abd Majid, M. R. Muhamad, Ceramics International 38, 2059 (2012).

J. Rodríguez-Carvajal, Fullprof Suite software: Crystallographic tools for Rietveld, profile matching and integrated intensity refinements for X-ray and/or neutron data. 2012.

A. J. Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, C. Shivakumara, B.M. Nagabhushana, R.P.S. Chakradhar, Spectrochimica Acta Part A 81, 53 (2011).

X. Xu, C. Cao, Journal of Magnetism and Magnetic Materials 321, 2216 (2009).

Y.Q. Chang, P.W. Wang, S.L. Ni, Y. Long, X.D. Li, J. Mater. Sci. Technol., 28, 313 (2012).

K. Samanta, P. Bhattacharya, R. S. Katiyar, W. Iwamoto, P. G. Pagliuso, C. Rettori. Phys. Rev. B 73, 245213 (2006).

C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik, V. M. Naik, Condens. Matter 19, 026212 (2007).