Preparation, characterization and evaluation of mesoporous Ni(%-wt)/ZSM-22 catalysts deposited on a ?-Al2O3 matrix for the hydrodeoxygenation of oleic acid
PDF (Español (España))

Keywords

Mesoporous ZSM-22
Nickel
Hydrodeoxygenation
Oleic acid. ZSM-22 mesoporosa
Níquel
Hidrodesoxigenación
Acido oleico.

How to Cite

Contreras Bárbara, J. R., Chavarría Hernández, J. C., Castro Gómez, M., Cuevas García, R., Ramírez Solís, J., Gutiérrez Alejandre, A., Salcedo Luna, C., & Puente Lee, I. (2016). Preparation, characterization and evaluation of mesoporous Ni(%-wt)/ZSM-22 catalysts deposited on a ?-Al2O3 matrix for the hydrodeoxygenation of oleic acid. Superficies Y Vacío, 28(2), 48-53. Retrieved from https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/13

Abstract

Catalysts of Ni(X)/ZSM-22Mes-?-Al2O3 were synthetized using zeolite ZSM-22 treated with HCl and NaOH solutions to generate mesopores. The modified zeolite (ZSM-22Mes) was incorportaed into a ?- Al2O3 matrix, and subsequently it was impregnated with nickel using several loads of the metal (X = 1, 2.5, 5 and 7.5% by weight). The synthesized Ni catalysts (X%)/ZSM-22Mes-?- Al2O3 were then tested in the hydrodeoxygenation of oleic acid. The support and the catalysts were characterized by nitrogen physisorption, XRD, SEM, TEM and FTIR. The results indicate that the chemical treatment to zeolite ZSM-22 and its incorporation in the ?- Al2O3 matrix did not significantly affect the zeolite properties. Moreover, the catalytic activity of oleic acid hydrodeoxygenation showed that conversion was almost constant along 6 hours of reaction, showing a maximum in the conversion of oleic acid with the catalyst having 5% nickel. It was also found that selectivity towards heptadecane increases with increasing the metal content but also increases selectivity to stearic acid.

PDF (Español (España))

References

.M. Mohammad, T. K. Hari, Z. Yaakob, Y. C. Sharma and K. Sopian, Renew. and Sust. Energy Rev. 22, 121 (2013).

.J. K. Satyarthi, T. Chiranjeevi, D. T. Gokak, P. S. Viswanathan, Catal. Sci. Technol., 3, 70 (2013).

.S. van Donk, A. H. Janssen, J. H. Bitter, K. P. de Jong, Catal. Rev. 45, 297 (2003).

.L. R. Martens, J.P. Verduijn and G. M. Mathys, Catal. Today. 36, 451 (1997).

.D. Verboekend, A. M. Chabaneix, K. Thomas, J. P. Gilson and J. Pérez-Ramírez, Cryst. Eng. Comm. 13, 3408 (2011).

.S. Brunauer, P. H. Emmet and E.Teller, J. Am. Chem. Soc. 60, 1533(1938).

.E. P. Barret, L. G Joyner, P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

.E. W. Valyocsik, US Patent 4902406, (1990)

.A. Gutierrez-Alejandre, M Trombetta, G Busca, J Ramírez. Microporous Materials, 12, 79 (1997).

. Lippens B C and Boer, Acta Cryst. 17, 1312 (1964).

. P. Voogd, J. J. F. Scholten, H. van Bekkum, Colloids and Surfaces. 55, 163 (1991).

. M. Tiitta, E. Harlin, J. Makkonen, A. Root, F. Sandelin, H. Osterholm. Studies in Surface Science and Catalysis, 154, 2323 (2004). R. B. Borade, A. Adnot, S. Kaliaguine, Zeolites 11, 710 (1991).

. C. Morterra and G. Magnacca, Cat. Today. 27, 497 (1996).

. D. T. Lundie, A. R. McInroy, R. Marshall, J. M. Winfield, P. Jones, C. C. Dudman, S. F. Parker, C. Mitchell, D. Lennon, J. Phys. Chem. B. 109, 11592 (2005).

. H. S. Roh, I. H. Eum, D. W. Jeong, B. E. Yi, J. G. Na, C. H. Ko, Cat. Today. 164, 497 (2011).

. K. Kandel, J. W. Anderegg, N. C. Nelson, U. Chaudhary, I. I. Slowing, J. of Catalysis. 314, 142 (2014).

. M. Snåre, I. Kubickova, P. Maki-Arvela, K. Eranen, D. Y. Murzin, Ind. Eng. Chem. Res. 45, 5708 (2006).

. B. Imelik, G. A. Martin, A. J. Renouprez. Fundamental and industrial aspects of catalysis by metals. 1erd ed. (CNRS Paris 1984).

. ] H. M. Hu, L. M. Cheng, R. Zhang, J. C. Bi, J. of Fuel Chem. and Techn. 41, 850 (2013).

. W. F. Maier, W. Roth, I. Thies, P. v. Ragué Schleyer, Chem. Ber. 115, 808 (1982).