Antenna effect of 2-thenoyltrifluoroacetone (TTA) on the luminescence of Y2O3 co-doped with Eu3+;Tb3+

Authors

DOI:

https://doi.org/10.47566/2025_syv38_1-250501

Keywords:

Sol-gel, rare-earths, aerogels, luminescence

Abstract

Y2O3 gels co-doped with lanthanide ions (Ln3+) were synthesized based on the sol-gel process. Eu3+ was used in proportions of 2, 4, and 8 mol% and Tb3+ at a low and constant concentration of 0.075 mol% (Y2O3:Eu3+;Tb3+). The gels were subjected to supercritical drying (aerogel) at 73 bar and 34 °C and to thermal treatment at 800 °C to obtain crystalline materials (crystallized aerogels). Subsequently, each sample was sensitized in a novel way with 9 µmol of the compound 2-thenoyltrifluoroacetone (TTA) -- Y2O3:Eu3+;Tb3+/TTA, to provide an antenna effect in order to focus the morphological, structural-chemical, and luminescent changes assigned to the energy transitions of Eu3+. When the crystal structure by X-ray diffraction (XRD) and the morphology by scanning electron microscopy (SEM) were analyzed, no drastic changes due to functionalization were observed. However, infrared (IR) and Raman spectroscopies were performed to identify the rare-earth oxides vibrational modes, although its main function was to reveal the adhesion of TTA to materials. The excitation-emission spectra were studied to evaluate the energy transfer to the Eu3+ activator ion and the influence of both the Tb3+ sensitizer and the TTA ligand on the luminescent properties of the samples Y2O3:Eu3+;Tb3+ and Y2O3:Eu3+;Tb3+/TTA, also the quantum yield corresponding to the highest luminescence samples was calculated. Based on the results, this class of materials can have novel and useful applications when TTA functionalization is fully exploited.

References

[1]. J. Zhou, J.L. Leaño, Z. Liu, D. Jin, K-L. Wong, R-S. Liu, J-C.G. Bünzli, Small 14, 1 (2018).

http://dx.doi.org/10.1002/smll.201801882

[2]. T. Cheisson, E.J. Schelter, Science 363, 1 (2019).

http://dx.doi.org/10.1126/science.aau762

[3]. C. Huang, X. Chen, Z. Xue, T. Wang, Sci. Adv. 6, 20 (2020).

http://dx.doi.org/10.1126/sciadv.aba1321

[4]. B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang, F. Wang, R. Deng, X. Liu, Chem. Rev. 122, 6 (2022).

http://dx.doi.org/10.1021/acs.chemrev.1c00644

[5]. S. Li, L. Zhou, H. Zhang, Light Sci. Appl. 11, 1 (2019).

http://dx.doi.org/10.1038/s41377-022-00866-w

[6]. M.R. Carro-Temboury, R. Arppe, T. Vosch, T.J. Sørensen, Sci. Adv. 4, 1 (2018).

http://dx.doi.org/10.1126/sciadv.1701384

[7]. Z. Chen, G. Dong, G. Barillaro, J. Qiu, Z. Yang, Prog. Mater. Sci. 121, 1 (2021).

http://dx.doi.org/10.1016/j.pmatsci.2021.100814

[8]. M.K. Hossain, M.H. Ahmed, M.I. Khan, M.S. Miah, S. Hossain, ACS Appl. Electron. Mater. 3, 10 (2021).

http://dx.doi.org/10.1021/acsaelm.1c00703

[9]. Z. Luo, D. Mao, X. Li, J. Luo, C. Gong, X. Liu, Coord. Chem. Rev. 508, 1 (2024).

http://dx.doi.org/10.1016/j.ccr.2024.215773

[10]. H. Huang, J.J. Zhu, Analyst. 144, 1 (2019).

http://dx.doi.org/10.1039/c9an01562k

[11]. F. Tommasi, P.J. Thomas, G. Pagano, G.A. Perono, R. Oral, D.M. Lyons, M. Toscanesi, M. Trifuoggi, Arch. Environ. Contam. Toxicol. 81, 4 (2021).

http://dx.doi.org/10.1007/s00244-020-00773-4

[12]. B.J. Clapsaddle, B. Neumann, A. Wittstock, D.W. Sprehn, A.E. Gash, J.H. Satcher, R.L. Simpson, M. Baümer, J. Sol-Gel Sci. Technol. 64, 1 (2012).

http://dx.doi.org/10.1007/s10971-012-2868-6

[13]. Y. He, W. Zhou, J. Xu, ChemSusChem. 15, 12 (2022).

http://dx.doi.org/10.1002/cssc.202200469

[14]. S.E. Crawford, P.R. Ohodnicki, J.P. Baltrus, J. Mater. Chem. C 8, 1 (2020).

http://dx.doi.org/10.1039/d0tc01939a

[15]. A. Kumar, N. Yadav, M. Bhatt, N.K. Mishra, P. Chaudhary, R. Singh, Res. J. Chem. Sci. 5, 12 (2020).

https://www.isca.me/rjcs/Archives/v5/i12/10.ISCA-RJCS-2015-152.pdf

[16]. P. Innocenzi, Open Ceram. 16, 1 (2023).

http://dx.doi.org/10.1016/j.oceram.2023.100477

[17]. L. Su, M. Niu, D. Lu, Z. Cai, M. Li, H. Wang, J. Mater. Sci. Technol. 75, 1 (2021).

http://dx.doi.org/10.1016/j.jmst.2020.10.018

[18]. F. Rechberger, M. Niederberger, Nanoscale Horizons 2, 1 (2017).

http://dx.doi.org/10.1039/c6nh00077k

[19]. P. Rusch, D. Zámbó, N.C. Bigall, Acc. Chem. Res. 53, 10 (2020).

http://dx.doi.org/10.1021/acs.accounts.0c00463

[20]. M.A. Aegerter, N. Leventis, M. Koebel, S.A. Steiner, Springer Handbook of Aerogels, vol. 1 (Springer, Switzerland, 2023).

http://dx.doi.org/ 10.1007/978-3-030-27322-4

[21]. C.A. García-González, M.C. Camino-Rey, M. Alnaief, C. Zetzl, I. Smirnova, J. Supercrit. Fluids 66, 1 (2012).

http://dx.doi.org/10.1016/j.supflu.2012.02.026

[22]. I. Smirnova, J. Supercrit. Fluids 106, 1 (2015).

http://dx.doi.org/10.1016/j.supflu.2015.09.015

[23]. S. Sakka, J. Sol-Gel Sci. Technol. 102, 20 (2022).

http://dx.doi.org/10.1007/s10971-021-05640-9

[24]. D. Bokov, A. Turki, S. Chupradit, W. Suksatan, M. Javed, I.H. Shewael, G.H. Valiev, E. Kianfar, Adv. Mater. Sci. Eng. 201, 1 (2021).

http://dx.doi.org/ 10.1155/2021/5102014

[25]. D. Navas, S. Fuentes, A. Castro-Alvarez, E. Chavez-Angel, Gels 7, 4 (2021).

http://dx.doi.org/10.3390/gels7040275

[26]. E. Barrios, D. Fox, Y. Y. Li, R. Catarata, J.E. Calderon, N. Azim, S. Afrin, Z. Zhang, L. Zhai, Polymers (Basel) 11, 4 (2019).

http://dx.doi.org/10.3390/polym11040726

[27]. A.C. Pierre, M. Pajonk, Chem. Rev. 102, 1 (2002).

http://dx.doi.org/10.1002/chin.200304237

[28]. H. Cai, Y. Jiang, J. Feng, S. Zhang, F. Peng, Y. Xiao, L. Li, J. Feng, Mater. Des. 191, 1 (2020).

http://dx.doi.org/10.1016/j.matdes.2020.108640

[29]. S. He, Y. Huang, G. Chen, M. Feng, H. Dai, B. Yuan, X. Chen, J. Hazard. Mater. 362, 1 (2019).

http://dx.doi.org/10.1016/j.jhazmat.2018.08.087

[30]. Z. Lun, L. Gong, Z. Zhang, Y. Deng, Y. Zhou, Y. Pan, X. Cheng, Gels 8, 3 (2022).

http://dx.doi.org/10.3390/gels8030141

[31]. Y. Jin, H. Zhou, D. Zhang, Rare Met. Mater. Eng. 45, 11 (2016).

http://dx.doi.org/10.1016/s1875-5372(17)30041-3

[32]. L.L. Santos, R.C. de Lima, M.A. Schiavon, R.R. Gonçalves, H.P. Barbosa, J.L. Ferrari, J. Lumin. 222, 1 (2020).

http://dx.doi.org/10.1016/j.jlumin.2020.117109

[33]. A.A. Ansari, M.A. M. Khan, S. Ameen, J. Nanoparticle Res. 25, 9 (2023).

http://dx.doi.org/10.1007/s11051-023-05843-x

[34]. X. Wang, J. Xu, J. Yu, Y. Bu, J. Marques-Hueso, X. Yan, Phys. Chem. Chem. Phys. 22, 1 (2020).

http://dx.doi.org/10.1039/d0cp01412e

[35]. V.V. Utochnikova, Coord. Chem. Rev. 398, 1 (2019).

http://dx.doi.org/10.1016/j.ccr.2019.07.003

[36]. K. Thomas, D. Alexander, S. Sisira, S. Gopi, P.R. Biju, N.V. Unnikrishnan, C. Joseph, Opt. Mater. 80, 1 (2018).

http://dx.doi.org/10.1016/j.optmat.2018.04.010

[37]. A. Valladares-Barrera, A.D. Alcantar-Mendoza, A. García-Murillo, L.M. Palacios-Lazcano, F.J. Carrillo-Romo, J. Sol-Gel Sci. 113, 1 (2024).

http://dx.doi.org/10.1007/s10971-024-06650-z

[38]. J.C.G. Bünzli, Eur. J. Inorg. Chem. 2017, 44 (2017).

http://dx.doi.org/10.1002/ejic.201701201

[39]. A. Escudero, A.I. Becerro, C. Carrillo-Carrión, N.O. Núñez, M.V. Zyuzin, M. Laguna, D. González-Mancebo, M. Ocaña, W.J. Parak, Nanophotonics. 6, 5 (2017).

http://dx.doi.org/10.1515/nanoph-2017-0007

[40]. D. Paderni, L. Giorgi, V. Fusi, M. Formica, G. Ambrosi, M. Micheloni, Coord. Chem. Rev. 429, 1 (2021).

http://dx.doi.org/10.1016/j.ccr.2020.213639

[41]. M.A. Lutoshkin, A.I. Petrov, Y.N. Malyar, A.S. Kazachenko, Inorg. Chem. 60, 5 (2021).

http://dx.doi.org/10.1021/acs.inorgchem.0c03717

[42]. G.L. Jiménez, M.J. Rosales-Hoz, M.A. Leyva, J.L. Reyes-Rodríguez, U. Galindo-García, C. Falcony, J. Mol. Struct. 1228, 1 (2021).

http://dx.doi.org/10.1016/j.molstruc.2020.129778

[43]. M.A. Worsley, J. Ilsemann, Th.M. Gesing, V. Zielasek, A.J. Nelson, R.A.S. Ferreira, L.D. Carlos, A.E. Gash, M. Bäumer, J. Sol-Gel Sci. Technol. 89, 1 (2018).

http://dx.doi.org/10.1007/s10971-018-4811-y

[44]. S.V. Kameneva, Kh.E. Yorov, R.K. Kamilov, S.Yu. Kottsov, M.A. Teplonogova, T.V. Khamova, M.A. Popkov, I.V. Tronev, A.E. Baranchikov, V.K. Ivanov, J. Sol-Gel Sci. Technol. 107, 1 (2023).

http://dx.doi.org/10.1007/s10971-023-06149-z

[45]. W. Zhang, Y. Liu, H. Yu, X. Dong, J. Photochem. Photobiol. A Chem. 379, 1 (2019).

http://dx.doi.org/10.1016/j.jphotochem.2019.04.040

[46]. A. García-Murillo, F.J. Carrillo-Romo, J. Oliva-Uc, T.A. Esquivel-Castro, S.D. Torre, Ceram. Int. 43, 1 (2017).

http://dx.doi.org/10.1016/j.ceramint.2017.06.079

[47]. W. Cheng, F. Rechberger, M. Niederberger, ACS Nano 10, 2 (2016).

http://dx.doi.org/10.1021/acsnano.5b07301

[48]. A. García-Murillo, A.D. Alcantar-Mendoza, F.J. Carrillo-Romo, I.C. Romero-Ibarra, I.A. Garduño-Wilches, Bull. Mater. Sci. 47, 3 (2024).

http://dx.doi.org/10.1007/s12034-024-03213-4

[49]. F.D.J. Carrillo, Á.D.J. Morales, A.G. Murillo, M.G. Hernández, D.J. Vigueras, V.G. Febles, Int. J. Mater. Res. 103, 10 (2012).

http://dx.doi.org/10.3139/146.110761

[50]. A. Tshikovhi, L.F. Koao, T.D. Malevu, E.C. Linganiso, T.E. Motaung, Results Mater. 19, 1 (2023).

http://dx.doi.org/10.1016/j.rinma.2023.100447

[51]. A.D. Alcantar-Mendoza, A. García-Murillo, F.J. Carrillo-Romo, J. Ortiz-Landeros, From Doping to Mixed Phases of Y2O3/Tb2O3 Powders. In: Trends and Challenges in Multidisciplinary Research for Global Sustainable Development, A.M. Hernández, K. Marcos, L.D. Canales, M. Zea, R.E. Sánchez (Springer, 2020) p. 170-180.

http://dx.doi.org/10.1007/978-3-031-57620-1_14

[52]. L. Ji, N. Chen, G. Du, M. Yan, W. Shi, Ceram. Int. 40, 2 (2014).

http://dx.doi.org/10.1016/j.ceramint.2013.09.135

[53]. L. Yu, J. Gao, Z. Zeng, Y. Zheng, Chem. Pap. 75, 3 (2021).

http://dx.doi.org/10.1007/s11696-020-01345-5

[54]. A.R. Nekoei, S.F. Tayyari, M. Vakili, S. Holakoei, A.H. Hamidian, R.E. Sammelson, J. Mol. Struct. 932, 1-3 (2009).

http://dx.doi.org/10.1016/j.molstruc.2009.05.045

[55]. S. Dolai, S.K. Bhunia, L. Zeiri, O. Paz-Tal, R. Jelinek, ACS Omega 2, 12 (2017).

http://dx.doi.org/10.1021/acsomega.7b01883

[56]. V. Tsaryuk, V. Zolin, J. Legendziewicz, R. Szostak, J. Sokolnicki, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 61, 1 (2005).

http://dx.doi.org/10.1016/j.saa.2004.04.005

[57]. L. Su, X. Liu, Q. Niu, Z. Li, J. Mater. Chem. C 12, 1 (2024).

http://dx.doi.org/10.1039/d4tc01353k

[58]. K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).

http://dx.doi.org/10.1016/j.ccr.2015.02.015

[59]. J. Li, L. Lin, W. Jiang, Z. Zhang, X. Zhang, M. Kuang, J. Zhuang, Q. Zhang, H. Ni, J. Shi, J. Alloys Compd. 885, 1 (2021).

http://dx.doi.org/10.1016/j.jallcom.2021.160966

[60]. B. Shao, X. Zhang, S. Sang, A. Guo, F. Cui, X. Yang, Eur. Polym. J. 147, 1 (2021).

http://dx.doi.org/10.1016/j.eurpolymj.2021.110324

Representation of the antenna effect of TTA, and (b) energy transfer diagram.

Downloads

Published

2025-05-20

Issue

Section

Research Papers

How to Cite

Antenna effect of 2-thenoyltrifluoroacetone (TTA) on the luminescence of Y2O3 co-doped with Eu3+;Tb3+. (2025). Superficies Y Vacío, 38, 250501. https://doi.org/10.47566/2025_syv38_1-250501