Method for measuring the setting process of cement-water mixtures by electrical impedance
Relative electrical impedance, setting process.
PDF

Keywords

Electrical resistivity
electrical impedance
hydration
cement
setting time

How to Cite

Morales Sánchez, E., Pineda Piñón, J., Manzano Ramírez, A., López-Romero, J. M., Gaytán Martinez, M., & Sánchez Vega, G. O. (2024). Method for measuring the setting process of cement-water mixtures by electrical impedance. Superficies Y Vacío, 37, 240101. https://doi.org/10.47566/2024_syv37_1-240101

Abstract

The setting and hardening of cement paste can be taken as the progressive hydration reaction of cement. This paper reports the findings on setting time of cement paste at early hydration by using a novel method named relative electrical impedance (REI). The novel REI method measures the relative electrical impedance between electrodes (ring shaped) embedded in the cement paste. REI measurements were conducted on cement paste samples with a water-cement ratio of 1:2 over 24 hours. REI measurements were compared with VICAT and heat latent methods for indirect validation. It was found that the proposed REI technique determined the 4 periods of the setting time process (sleeping, hydration, deceleration, and diffusion) and allowed the measurement of the sleeping period in detail. It was concluded that the novel REI method could be used as a new method to measure the setting time of cement paste in early hydration.

https://doi.org/10.47566/2024_syv37_1-240101
PDF

References

. P.H. Jézéquel, V. Collin, Cem. Concr. Res. 37, 1321 (2007).

https://doi.org/10.1016/j.cemconres.2007.05.007

. A. Emanuelson, S. Hansen, E. Viggh, Cem. Concr. Res. 33, 1613 (2003).

https://doi.org/10.1016/S0008-8846(03)00115-7

. K. Scrivener, A. Nonat, Cem. Concr. Res. 7, 651 (2011).

https://doi.org/10.1016/j.cemconres.2011.03.026

. M. Michaux, E.B. Nelson, B. Vidick, Developments in Petroleum Science 28, 2-1-2-17 (1990).

https://doi.org/10.1016/S0376-7361(09)70300-0

. A. Smith, P. Abélard, F. Thummen, A. Allemand, Cem. Concr. Compos. 24, 477 (2002).

https://doi.org/10.1016/S0958-9465(01)00079-8

. J. Pineda, J. Vega, A. Manzano, E. Prokhorov, E. Morales, J. González, Appl. Clay Sci. 40, 1 (2008).

https://doi.org/10.1016/j.clay.2007.06.006

. M.R. Moreno-Virgen, J.J. Soto-Bernal, J.A. Ortiz-Lozano, A. Bonilla-Petriciolet, J.T. Vega-Durán, R. González-Mota, J. Pineda-Piñón, Mater. Construcc. 61, 77 (2011).

https://doi.org/10.3989/mc.2010.54709

. M.A. Gabalec, M. Barreda, Tiempo de fraguado del hormigón (Universidad Tecnológica Nacional, Argentina, 2008).

https://es.scribd.com/document/107103750/Tesis2008-Anabela-Gabalec-Tiempo-de-Fraguado-Del-Hormigon

. ASTM C191-99, Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle (West Conshohocken, PA, USA, ASTM International, 2001).

https://doi.org/10.1520/C0191-99

. R. Ylmen, U. Jäglid, B. Steenari, I. Panas, Cem. Concr. Res. 39, 433 (2009).

https://doi.org/10.1016/J.CEMCONRES.2009.01.017

. D. Vladikova, J. Kilne, S. Skinner, G. Raikova, Z. Stoynov, Electrochim. Acta 8, 1611 (2006).

https://doi.org/10.1016/j.electacta.2005.02.110

. D.V. Ribeiro, C.A.D. Rovere, C.A.C. Souza, S.E. Kuri, J.A. Labrincha, J.C.C. Abrantes, M.R. Morelli, Int. Sch. Res. Notices 2011, 11 (2011).

https://doi.org/10.5402/2011/365276

. G. Sant, C. Ferraris, J. Weiss, Cem. Concr. Res. 38, 1286 (2008).

https://doi.org/10.1016/J.CEMCONRES.2008.06.008

. H. Sleiman, A. Perrot, S. Amziane, Cem. Concr. Res. 40, 681 (2010).

https://doi.org/10.1016/j.cemconres.2009.12.001

. D. Lootens, P. Jousset, L. Martinie, N. Roussel, R. Flatt, Cem. Concr. Res. 39, 401 (2009).

https://doi.org/10.1016/j.cemconres.2009.01.012

. K. Backe, O. Lile, S. Liomov, SPE Drill. Complet. 16, 201 (2001).

https://doi.org/10.2118/74694-PA

. D. Sánchez de Guzmán, Tecnología del concreto y del mortero, 5ª Ed. (Bhandar Editores LTDA, 2001).

https://isbn.cloud/9789589247044/tecnologia-del-concreto-y-del-mortero/

. P.K. Mehta, P.J.M. Monteiro, Concrete Microstructure, Properties, and Materials (McGraw-Hill Education, 2014).

https://www.accessengineeringlibrary.com/content/book/9780071797870

. M. Cabeza, Cem. Concr. Res. 32, 881 (2002).

https://doi.org/10.1016/S0008-8846(02)00720-2

. J. Cruz, J. Payá, F. Lalinde, Mater. Construccion. 61, 7 (2011).

https://doi.org/10.3989/mc.2010.53709

. L. Xiao, Z. Li, Cem. Concr. Res. 38, 312 (2008).

https://doi.org/10.1016/j.cemconres.2007.09.027

. R. Ylmen, B. Jäglid, I. Steenari, Cem. Concr. Res. 39, 433 (2009).

https://doi.org/10.1016/j.cemconres.2009.01.017

. J. Bullard, H. Jennings, R. Livingston, A. Nonat, G. Scherer, J. Schweitzer, K. Scrivener, J. Thomas, J. Biernacki, Cem. Concr. Res. 41, 1208 (2011).

https://doi.org/10.1016/j.cemconres.2010.09.011

. V. Bonavetti, C. Castellanos, H. Donza, V. Rahhal, E. Irassar, Cem. Concr. Res. 5, 40 (2013).

http://dx.doi.org/10.3989/mc.2014.04813

. P. Moses, S. Perumal, IOSR-JMCE 13, 17 (2016).

https://doi.org/10.9790/1684-1306011731

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Array